
AFRL Technology Horizons, August 2005 www.afrlhorizons.com/et 27

A wide range of standards-based
COTS products are now available for
the configuration of today’s increasingly
distributed embedded software
applications, which communicate real-
time data between many computing
nodes at high speed. So why is the
design of larger, more complex
distributed applications still such a
challenge?

The main issue is that efficient
handling of real-time data is not always
as simple as it looks. An embedded
network must find and disseminate
information quickly to many nodes. The
application needs to find the right data,
know where to send it, and ensure
delivery to the right place at the right
time.

This is not a new problem. Virtually
all-modern operating systems provide a
basic network TCP/IP stack. While the
stack provides fundamental access to
the network hardware and low-level
routing and connection management,
writing directly to the stack results in
unstructured code. Complex distributed
applications often require a more
powerful communications model.

Several types of software tech-
nologies, commonly known as middle-
ware, have emerged to meet the needs
of these complex distributed
applications. They fall into three broad
classes: client-server, message-passing,
and publish-subscribe.

Client-Server
Client-server networks include ma-

chines that request data (clients) and
machines that store data (servers). Most
of these middleware designs present an
Application Programmer Interface (API)
that strives to make the remote node
appear to be local. That is, users call
methods on remote objects in order to
get data, just as if they were on the local
machine (also called Remote Method
Invocation, or RMI). Client-server
designs work well for systems with
centralized information, such as

databases, transaction processing systems,
and central file servers. Successful client-
server middleware designs include
CORBA®, DCOM, HTTP, and Enterprise
JavaBeans™ (EJB).

How do you know when client-server
fits a system’s dataflow? A quick and
simple diagram mapping information
sources and sinks will usually suffice. It
should focus on which nodes will have
the information, how they will find each
other, and how the data will flow. If the
drawing is many-to-one, meaning that it
looks like a “hub-and-spoke” system (see
Figure 1), a Web server, or a centralized
database, then client-server will work
well for the application.

If multiple nodes are generating
information, client-server architectures
will require that all information be sent
to the server for subsequent redistri-
bution to the clients. Such indirect
client-to-client communication is
inefficient, particularly in a real-time
environment. The central server also
adds an unknown delay to (and
therefore removes determinism from)
the system, because the receiving client
does not know when or if it has a
message waiting.

In most systems that are well suited to
client-server architecture, it is easy to
specify where the servers should be
because the relatively static information
sources are centralized. Clients rarely
need to talk to other clients, and if they
do, the communications are not time
critical. Several other characteristics
also indicate that a client-server design
will work best:

• Most transactions are easily modeled
by “request-reply” semantics

• Replies are often large, e.g., big files
• Processing proceeds as a series of steps
• Time criticality and fault tolerance are

second-order issues

If you have a hub-and-spoke archi-
tecture with these properties, select
DCOM when your system is restricted to
nodes using the Windows operating
system. Select CORBA otherwise. Also
consider other client-server transports,
such as HTTP.

Keep in mind that client-server
middleware technologies typically build
on top of TCP (Transmission Control
Protocol). TCP offers reliable delivery,
but little control over delivery

semantics. For instance, TCP retries
dropped packets even though the
retries may take a lot of time. TCP also
requires dedicated resources for each
connection and does not scale well for
extended data distribution in larger
systems due to the set-up time and
maintenance needs of each connection.

Message Passing
Message-passing architectures work by

implementing queues of messages as a
fundamental design paradigm. Processes

can create queues, send messages, and
service messages that arrive. This extends
the many-to-one client-server design to a
more distributed topology, making it
easier to exchange information between
many nodes in the system. Some op-
erating systems (e.g., QNX® and OSE®)
use message passing as a fundamental
low-level synchronization mechanism;
others provide it as a library service (e.g.,
VxWorks®, Nucleus®, and POSIX®

message queues).
Message-based operating system (OS)

designs can use send-receive-reply
blocking sequences for inter-node (and
inter-process) synchronization and com-
munication. In addition to the message-
based OS, many enterprise middleware
designs implement a message-passing
architecture. BEA’s MessageQ® and
IBM’s MQSeries® are significant players
in this market. Message passing allows
direct peer-to-peer connections.

A message-passing design is best if
you do not need a data-centric model:
With this architecture there is no real
model of the data itself, only a model of
a means to transfer data. How do you
know if you need a data-centric model?
The system design drawing will have a
definite simple structure, even though it
may not fit the hub-and-spoke pattern.

Successful message-passing designs
usually look like plumbing supply lines
into a neighborhood (see Figure 2). A
few main information trunks deliver

What Real-Time Data Distribution
System Is Right for You?

Figure 1: Client-server works best with centralized data.

Figure 2: Message passing works best with a few
clear channels.

Cov ToC + – ➭

➮

AIntro

data, which may branch out to several
destinations. Most flow is one-way and
relatively static. Return lines may or may
not follow roughly the same patterns. If
you see nodes that want to tap into the
plumbing to get data, publish-subscribe
may be more appropriate.

With messages, applications have to
find data indirectly by targeting specific
sources (by process ID or channel, or
queue name) on specific nodes. The
model does not address how the appli-
cation knows where that channel is,
what happens if that channel does not

exist, etc. The application developer
must determine where to get and send
data, and when to do the transaction.

Also, messaging systems rarely allow
control over the messaging behaviors or
quality of service (QoS). Messages flow
in the system when produced; all
streams have similar delivery semantics.
In the embedded space, it usually
creates a dependency on a particular
OS being present throughout the
system, raising issues of application
portability and integration with nodes
outside the OS.

Publish-Subscribe
Publish-subscribe adds a data model

to messaging. To find the right data,
nodes declare their interest once and
publishers send data when it is available.
Messages pass directly between the

communicating nodes (source to sink)
without requiring intermediate servers.
Multiple sources and sinks are defined
within the model for natural re-
dundancy and fault tolerance. The
fundamental communications model
provides both discovery (what data
should be sent) and delivery (when and
where to send it). These systems are
good at distributing large quantities of
time-critical information quickly, even
in the presence of unreliable delivery
mechanisms.

Modern implementations of publish-
subscribe middleware allow QoS mech-
anisms to be specified per data stream.
Properly implemented, publish-sub-
scribe middleware delivers the right
data to the right place at the right
time. Publish-subscribe capabilities
continue to improve and standards are
evolving. The Object Management
Group’s (OMG, a standards body
responsible for technologies such as
CORBA and UML®) newly adopted
Data Distribution Services (DDS)
standard is the first open international
standard directly addressing publish-
subscribe middleware for embedded
systems.

Is publish-subscribe right for your
application? If the message-passing data-
flow diagram above was difficult to draw,
try it again with each node just
publishing the data it knows and
subscribing to what it needs. This
design decouples the dataflow. The best
way to draw it is to make a central data
flow bus, and show each node just
connected to the bus (see Figure 3).
The data model means you can
essentially ignore the complexity of the
data flow; each node gets the data it
needs from the bus.

This article was written by Dr. Robert
Kindel, vice president of Technical Services
for Real-Time Innovations (RTI), located in
Santa Clara, CA. Contact Dr. Kindel at
bob.kindel@rti.com or (781) 306-0470,
ext. 202, for more information.

28 AFRL Technology Horizons, August 2005For Free Info Visit http://info.ims.ca/5215-861

Figure 3: Publish-subscribe decouples data flows.

Cov ToC + – ➭

➮

AIntro

