®
rt Your systems.
Working as one.

Implementation of the Technical Vision
Connext DDS 5.3.0 and Future

Fernando Crespo Sanchez, Product Architect

Outline

* Key New 5.3.0 Features and Products
— Layered Architecture Features:
e Scalability: Topic Query
* Accessibility: IP mobility, Locator Reachability
* Security: Connext DDS Secure

— Cloud Discovery Service

— Usability & Debuggability: Heap monitoring and Logging
Improvements

— Robustness

e Other 5.3.0 Features and Products
* Looking into the Future

©2017 Real-Time Innovations, Inc

Layered Architecture: Patient Monitoring Use Case

———

Admin Domain (Cloud)

Routing Service ‘ ’ Gateway X, Enterprlse 3'd Party

Central Domain ® © @

b) L

Workstations, Storage,
Historian

| S

Room Domain

) e) e

Scalability by
—— implementing a
federated
architecture

Patient Monitoring Devices

Eyered Architecture Gateway: RTI Routing Service

* Bridge data across Data Buses, Topics and other

Protocols
— Different topic names, type names, type schemas

* Security gateway
 WAN traversal in combination with TCP transport

e Scalability

— Discovery isolation, smart data forwarding

Layered Architecture Requirements

* Dynamic IP Address Support
— Connext DDS IP mobility

* Efficient and Scalable Subscription to live and historical data
— [Live] Content Filtered Topic (CFT) propagation
— [Historical] TopicQuery and TopicQuery propagation

* Fine grain protection for critical data
— Connext DDS Secure

©2017 Real-Time Innovations, Inc

Requirements Example

Live Updates
Subscribe to
current

temperature

Pulse/EKG Blood Pressure

Give me the last
4-hour

temperature for
patient 1

Oxygen
Saturation

Temperature .

Routing Routing
Service Service

CONNEXT DDS SECURE CONNEXT DDS SECURE

©2017 Real-Time Innovations, Inc

Topic Query

Scalable historical topic data query in federated large scale system

Scalable Filtering of Live Data: CFT Propagation

Subscribes: { ID1 }

Subscribes: { ID1, ID3 }
Sugsucl? rlbe{sldll?l IR

* Ay Filtering occurs
O O at the source

Publishes: Publishes:
{D1, D1} {D2,1D2} Subscribes: Subscribes:

{ID3} {ID1}

IDX: Patient ID X
DX: Sample X

©2017 Real-Time Innova tions, Inc

Scalable Historical Data Retrieval Requirements

* Historical samples sent in parallel to live data
—Qut-of-band point-to-point channel

*No unnecessary data through Routing Services

* No caching in Routing Services unless explicitly
configured (one-off requests)

* Ability to choose between reading historical
samples or reading live samples

©2017 Real-Time Innovations, Inc

TopicQuery — Historical Topic Data Retrieval

ID=1

-

Patient Topic

Global Data Space

Timestamp

Temperature

Content Filter:

TopicQuery
Temperature >

(1, ..., 98.6)

(1, ..., 99.8)

(1, ..., 100.4)

(1,..,986) (2, .. 98.8)
2,..,99.7) (1,..,99.8)
(1, ..,100.4) (2, .., 99.0)
(2,..,99.7) (1, .. 100.4)
(2, ..., 98.8)

(2, ..., 99.0)

100

rti

©2017 Real-Time Innovations, Inc

‘Scalable Filtering of Historical Data: TopicQuery

TQ: {ID2}
TQ: {ID2}

* ey Filtering occurs
O O at the source

Publishes: Publishes:

{D1,ID2} {D2,1D1} TQ: {ID2}

IDX: Patient ID X
DX: Sample X

©2017 Real-Time Innova tions, Inc

Creating TopicQuery

TopicQuerySelection selection;
TopicQuery * query;

cft = subscriber->create contentfilteredtopic (
"MyCFT", topic, "P =1 or P = 3", parameters);

reader = subscriber->create datareader (cft, ...);

selection.filter expression = "P =1 or P = 3";
query = reader—>Zreate_topiq_query(selection);

Take retrieves both, live data, and
shilie (Lous) | TopicQuery data.
reader-—>take(...); Use sample_info. topic_query_guid

to see if data is part of a TopicQuery

v

reader->delete topic query (query) ;

©2017 Real-Time Innovations, Inc

Reading TopicQuery Samples

TopicQuerySelection selection;
TopicQuery *query = NULL;
ReadConditionParams condParams;
ReadCondition *cond = NULL;

reader = subscriber->create datareader (topic, . . .)

condParams.stream kinds = TOPIC_QUERY STREAM;
cond = reader->create_ readcondition w_params (condParams) ;

selection.filter expression = "P = 1";
query = reader->create_topic_query (
selection) ;

while (true) {
reader->take w _condition (
data seq, info seq, cond);

reader->delete topic_query (query) ;

©2017 Real-Time Innovations, Inc

IP Mobility & Locator Reachability

Enabling communications in mobile networks

Basic Use Case

Subscribe to
current
temperature

Pulse/EKG Blood Pressure

Oxygen
Saturation

T P

Temperature

Routing
Service

Subscribe to
current
temperature

o P

©2017 Real-Time Innovations, Inc

Other Use Cases

DHCP Server

4) Mobile devices
roaming across

3) DHCP segments
lease
expiration 192.160.2.1
‘ 192.160.2.32
1) Connecting to the
network at run-time
192.160.3.3
192.160.2.3
2) Switching Network
interface 192.160.3.1

©2017 Real-Time Innovations, Inc

Locator Reachability

Don’t Send Data To Non-Reachable IP Addresses

RTPS Participant Announcement

Unicast user-data locator:
192.168.1.1:21411
192.168.2.1:21411

/ Domain / Domain \

Participant 1 RTPS DATA to 192.168.1.1:21411 Participant 2

® RTPS DATA to 192.168.2.1:21411

RTPS PING to 192.168.1.1:21411

k / . (o] d 2.1 /
> > Ao

192.168.2.1 192.168.1.1 - — < —> 192.168.1.2

\ 4

A

A

v

©2017 Real-Time Innovations, Inc

Cloud Discovery Service

Provisioning discovery in cloud-based environment

What is Cloud Discovery Service?

Cloud Discovery Service (CDS) is a mediator for the discovery process in
environments where multicast is not available.

CDS

Multicast-less . .
articipants DB
network [P P i }

® (DS as a Participant announcement forwarder.
® Peer Participants only know about CDS in first instance

Cloud discovery traffic / (initial_peers).

Peer-to-peer discovery /

©2017 Real-Time Innovations, Inc

Initial Peers

CDS
(running 192.168.1.1:5678)

rtps@ugdpyd://192.168.3.2:5678 rtos@uavASRGREBLL 215678 rtps@IRVA{439R6kER 4, 2:5678
udpv4://192.168.4.1, udpv4://192.168.4.1, udpv4://192.168.3.1,

©2017 Real-Time Innovations, Inc

Domain Isolation using Domain Tags

A domain tag is a logical space within a domain. Domain tags are isolated from each other.

©2017 Real-Time Innovations, Inc

Connext DDS Secure

Securing the Connext Databus

Approaches to Protect DDS

* Transport Layer Security (before 5.3.0)

* Fine-grained Security (5.3.0)

Fine-Grained Data-Centric Security

e Access control per Topic
* Read versus-write permissions
* Instance-specific permissions

©2017 Real-Time Innova tions, Inc.

©2017 Real-Time Innovat ions, Inc

Usability, Debuggability &
Robustness

Heap Monitoring

* Feature to monitor middleware heap memory allocations in
native memory space
— Useful to debug/analyze unexpected memory growth

* New API to enable/disable heap monitoring and take heap
allocations snapshots

* Platform-independent feature
* Works with Release/Debug libraries
e Supported by all infrastructure services

©2017 Real-Time Innovat ions, Inc

Heap Monitoring Usage

DDS_Boolean NDDS_Utility_enable_heap_monitoring ()
Starts monitoring the heap memory used by RTI Connext.

void NDDS_Utility_disable_heap_monitoring ()
Stops monitoring the heap memory used by RTI Connext.

DDS_Boolean NDDS_Utility_pause_heap_monitoring ()
Pauses heap monitoring.

DDS_Boolean NDDS_Utility_resume_heap_monitoring ()
Resumes heap monitoring.

DDS_Boolean NDDS_Utility_take_heap_snapshot (const char *filename, DDS_Boolean print_details)
Save the current heap memory usage into a file.

Two new command-line parameters for infrastructure services:
-heapSnapshotPeriod <sec>
-heapSnapshotDir <dir>

©2017 Real-Time Innovations, Inc

Heap Snapshot File Example

Current process vsize 6803566592
Current process rsize 1069948928
Current heap usage 210951592
High watermark 212340328

Alloc count 56309122

Free count 54350123

block_id, timestamp, block_size, pool_alloc, pool_buffer_size, pool _buffer_count, topic_name, activity,
alloc_method_name, type _name

12830, 1492838970, 104, MALLOC, 0, 0, PRESServiceRequest, PRESCstReaderCollator_new,
RTIOsapiHeap_allocateStructure, struct REDAFastBufferPool

©2017 Real-Time Innovations, Inc

Logging Improvements

* Supporting Large Logs: Rotate among multiple files
with logging infrastructure

bool NDDSConfigLogger::set ouput file set(
const char *file prefix,
const char *file suffix,
int max capacity,
int max files)

* Additional Logging context:

— Serialization/Deserialization errors print TopicName and
TypeName and error cause (for example unexpected enum value)

©2017 Real-Time Innovations, Inc

Robustness

* Endurance test

e Static code analysis using cppcheck
* Linux warning free compilation

* 10 Gb performance

* Multicast scalability test

* CFT scalability test

e AIT (Automated Install Testing)

©2017 Real-Time Innovat ions, Inc

Other 5.3.0 Features And
Products

RTI Code Generator

* Usability:
— New modern C++ (C++03, C++11) TypePlugin that maps IDL strings
to std::string and IDL sequences to std::vector
* To enable, use —stl command-line option in rtiddsgen

— Ability to generate constructor/destructor and map IDL string to
std::string for not modern C++ (C++)

* To enable, use —constructor and —useStdString in rtiddsgen

©2017 Real-Time Innovations, Inc

RTI Code Generator

* Usability:
— New data_to_string APl with multiple output formats: DEFAULT,
XML, JSON

DDS_ReturnCode_t FooTypeSupport_data_to_string(
Foo*sample,
char *str,
DDS_UnsignedLong *str_size,
const struct DDS_PrintFormatProperty *property)

©2017 Real-Time Innovations, Inc

RTI Code Generator

e Standard Compliance:
— Support for prefix syntax to apply built-in annotations

struct MyType {
@key long keyMember;
@optional FooStruct fooMember;

}

— Support for new built-in annotations: @autoid, @hashid, @external
(previously “*’), @nested (previously top-level), @value (previously ‘=’
for enumerator values), @appendable, @mutable, @final

— Parsing of custom annotations, ignore them
— Negative values in enums
— Support for empty structures

©2017 Real-Time Innovations, Inc

Other products to Highlight

* Web Integration Service:
— Promoted to GAR
— Integration with Admin Console

e Database Integration Service:
— Support for PostgreSQL (data subscription only)
— Support for JSON storage in PostgreSQL and MySQL
— Storage of Source/Destination Timestamp

* Connector:
— Promoted to Experimental and featured in RTI Labs

* System Designer:
— Prototype available through Launcher

©2017 Real-Time Innovations, Inc

Conclusion & Final Remarks

Conclusion & Final Remarks

«5.3.0:

— Provide features and products that allow building an scalable and
secure layered architecture

— Improve product robustness, debuggability, and usability

* Looking into the Future:
— Adds fundamental new capabilities for system integration
— Improved support for large data streaming use case
— Micro and Connext DDS Pro alighnment

©2017 Real-Time Innovations, Inc

Thank you

