
Practical Aspects of Using
RTI Connext DDS in UGV

Josef Schröttle
Senior Systems Engineer
RUAG MRO Schweiz
RUAG Schweiz AG
Munich, May 22nd, 2019

2 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Short History of UGV at RUAG

§ Vehicle Gecko, sequential hybrid with four hub motors
§ Teleoperate/Control thru VHF radio
§ Autonomy with preplanned/teach-in & follower
§ Vehicle and Control Station in C++

RTI DDS in Control Station but not in vehicle yet!

Gecko, 2008 to 2011

3 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Short History of UGV at RUAG

§ Vehicle Robotics Kit VERO
§ Autonomy: As Gecko with added

collision avoidance using Radar

§ Vehicle in C++ with DDS, control station rewrite in C#
§ Concept for multiple control stations and multiple vehicles

RTI DDS in Control Station and Vehicle!
Custom DDS-Router for multiple

control stations & vehicles

Eagle IV with VERO, 2012 to 2015

4 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Short History of UGV at RUAG

§ Boschung Automated Snow Removal
§ Snow clearance on airports
§ Vehicles in formation only

§ Modular Architecture Lite/Full in C++ with DDS
§ Vehicle to Vehicle Communication
§ DDS-Routing thru 4G planned
§ Trials in fall 2018 were promising

§ End of robotics at RUAG due to
company restructuring in 2019/20

BASR, 2016 to 2018

5 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Modular Architecture

§ Almost everybody today talks about ‘system of systems’ or IoT
§ This will be more and more important but is (in my opinion) mostly a communication and

synchronization challenge
§ Of course DDS will help you there
§ But the ‘old’ software challenges still exist:
-Modular Architecture
-Maintainability
-Testability
-Scalability

§ And DDS can help you there also
§ We used DDS mainly to create a modular architecture for our control stations and vehicles

6 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Modular Architecture in Vehicle

Fahrzeugrechner

RTI DDS Middleware

Routing
Gateway PayloadPosition &

Attitude VideoStarter &
Watchdog Video

Energy
Mgmt

Driving
Dynamics LoggingFlexray

Gateway Web Server

Plattform

Net

Radio Video-
encoderGPS / INS

VehicleOptional

Video-
encoder

Autonomy

Sensors

7 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Modular Architecture in Vehicle and C2

§ Implementation in the vehicle:
-Every module is own Linux executable with DDS-Interface
-Starter starts modules and monitors them (thru DDS lifeliness)

§ Implementation in the control station is similar:
-Every module is own Windows executable with DDS-Interface
-Basic idea: Every window is an own executable

e.g. dashboard, video in multiple instances, map

8 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Modular Architecture in Vehicle and C2

§ Advantages:
-Modules can be optional and running in multiple instances

(e.g. autonomy and video systems)
- Implementation of modules either in central computer or separate hardware, changeable later

without affecting other modules
-The DDS middleware provides a fully documented layer of abstraction
-Every module is independently testable on the DDS interface
-Modules can be implemented in different programming languages
-Many combinations possible for integration and testing

e.g. Vehicle with Positioning, Logging and Web-Server
-For testing the Routing Gateways can be eliminated and the DDS domains directly connected

§ Challenges:
-Process-Priorities must be configured correctly

9 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Adressing of Modules / Systems

§ For modular systems all modules must conform at least to the following requirements:
-Every module is addressable with an unique address
-The source address is a ‘key’ in every topic
-Every module implements a common interface with topics
- Alive and status
- Logistics data (e.g. software-version)
- Error reporting & recovery
- Logging

§ Module addressing has evolved over time:
-Gecko had only keys ‘AppID’ and ‘CEP’ (command&control only)
-Eagle has ‘groupId’, ‘systemId’, ‘subsystemId’ and ‘’moduleId’
-BASR has ‘vehicleId’, ‘typeId’ and ‘instanceId’ (inspired by GVA)

10 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Now to practical aspects and examples

§ Required knowledge for following samples:
-C/C++
- IDL files
-RTI DDS QoS and profiles

11 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Addressing of Modules / Systems

§ We defined a base structure for all topics and used inheritance to include it in all topic types
§ The name was ‘BaseAV’ for ‘Actual Value’

Source Address

// Basic Indentifier types
typedef unsigned long VehicleId;
typedef unsigned short TypeId;
typedef unsigned short InstanceId;

// Address of an object
struct ObjectId
{

VehicleId vehicleId;
TypeId typeId;
InstanceId instanceId;

}; //@top-level false

// Timestamp
struct Timestamp
{

long long seconds;
unsigned long nanoseconds;

}; //@top-level false

// Base struct for all actual values
struct BaseAV
{

ObjectId sourceID; //@key
Timestamp timeOfGeneration;

}; //@top-level false

12 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Addressing of Modules / Systems

§ And it was used like this, e.g. in the logging topic

Source Address

// System wide logging
struct LoggingAV : BaseAV
{

Severity severity;
ShortString info;
LongString data;
ErrorCode errorCode;

}; //@Extensibility FINAL_EXTENSIBILITY

13 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Addressing of Modules / Systems

§ Sometimes you need to send data specifically to a module
§ This is contrary to the Pub / Sub idiom where the publisher should not know about the

subscribers!

Recipient Address = Directed Send

// Base struct for all nominal values

struct BaseNV

{

ObjectId sourceID; //@key

ObjectId recipientID; //@key

Timestamp timeOfGeneration;

}; //@top-level false

// System wide error masking

struct ErrorMaskNV : BaseNV

{

ErrorCode errorCode; //@key

}; //@Extensibility FINAL_EXTENSIBILITY

14 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

QoS Profiles

§ Define QoS Profiles in XML and load the XML explicit during startup
§ It is easily ‘adjustable’ during integration & debugging
§ Define topic QoS only in profiles and create a ‘minimum’ working set
§ Use inheritance to structure the profiles
<!-- Commands, keep the last value -->
<qos_profile name="BASR.Command" base_name="BASR.Base.KeepLastReliable"/>

<!-- Pulsed command, it disappears after the lifespan -->
<qos_profile name="BASR.Pulse" base_name="BASR.Base.StrictReliable.Volatile">
<datawriter_qos>
<lifespan>
<duration>
<sec>2</sec>
<nanosec>DURATION_ZERO_NSEC</nanosec>

</duration>
</lifespan>

</datawriter_qos>
</qos_profile>

15 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Structure Topic Names

§ Caution: All topic names are in a global namespace per domain

(like global variables in a whole system)

§ Make sure the names don‘t collide, like ‚Status‘ or ‚Mode‘

§ Modules (namespace in IDL) don’t help here

§ We used a structure in topic names, chars like ‘.’ or ‘/’ are possible

"BASR.Common.LoggingAV"
"BASR.Common.ErrorAV"
"BASR.Position.GlobalPositionAV"
"BASR.Navigation.SolutionAV"
"BASR.Navigation.AutonomousModeAV"
"BASR.MissionData.MissionNV"
"BASR.Gui.StatusAV"
"BASR.Safety.StatusAV"

16 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Readable IDL Files

§ It really helps to define topic type, name and QoS profile together
§ The QoS profile is of the writer, the reader can differ (but mostly is same)
// System wide logging
struct LoggingAV : BaseAV
{

Severity severity;
ShortString info;
LongString data;
ErrorCode errorCode;

}; //@Extensibility FINAL_EXTENSIBILITY

// Topic name and QoS profile
const string TOPIC_LOGGING_AV = "BASR.Common.LoggingAV";
const string PROFILE_LOGGING_AV = "BASR.Logging";

17 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Be Aware of Traffic

§ Sometimes a publisher has data with a high frequency
e.g. INU attitude data with 50 Hz or more

§ And has multiple subscribers like Navigation and GUI
§ If the GUI now just subscribes it will ‘wake up’ way to often

(a typical GUI update rate is 10 Hz for a ‘smooth’ display)

§ The solution is QoS 'Minimum Separation’
- to reduce CPU load and to avoid 'sample lost'
- to reduce traffic

§ The INU writer publishes with Best-Effort profile "BASR.PeriodicData"
§ The Navigation reader uses the same profile to get max. speed
§ The GUI reader uses the profile "BASR.PeriodicData.10Hz"

which has a minimum separation of 100ms (= 10 Hz)

QoS Minimum Separation

18 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Be Aware of Traffic

§ Often applications need topic data from a specific source only
§ E.g. our vehicles listen only to their ‘assigned’ control station
§ But all control stations publish on the same topic (keyed with sourceID)
§ ‘Normally’ applications wake up on data, see if it is for them and throw the

sample away if it is not for them (in reader callback code)

§ But the discarded sample has already generated traffic and CPU load!

§ The solution is to set a ‘Content Filter’ on the sourceID in the reader
§ The filtering will then be done in the writer separately for every reader!

§ Note: Set the content filter before creation of the reader
(otherwise the 'historical' samples won't be filtered)

Content Filter

19 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Writer and Reader Lifecycle

§ Create all writer & readers at application startup
-do not create writers 'on demand’
-do not destroy writers
-You can create readers ‘on demand’ but try to avoid it

§ Create writers before readers
-most likely writer topics will be updated on response to reader data
-You cannot (and should not) create writers in reader listeners

§ When specifying a listener in create_datareader() be prepared to handle data of
the reader when the reader is created
(reader listeners can be called before create_datareader() returns!)

§ We used a two-stage approach (init/run) where all writers & readers were created
in ‘init’ and all listeners / waitsets started in ‘run’

§ Generally prefer Waitsets over Listeners!

20 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Application Error Reporting

§ For a real-world system you need to have a ‘standardized’ way to report errors
and react to them

§ In our system the ‘error topic’ has evolved over time:
-Gecko: Topic with 64-bit bitfield in an ‘unsigned long long’
-VERO: Topic with sequence<unsigned short>

§ Problem of this approach: Setting / Clearing an error is a Read-Modify-Write
operation on the writer side and therefore needs a global variable and locking!

§ Solution:
-BASR: Keyed topic with error number as key
-Use ‘Write’ to set an error, ‘Dispose’ to clear an error
-No locking required

Motivation

21 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Application Error Reporting
Example
module basr
{

module common
{

// Suggested action to fix an error. Will be sent with the error.
enum FixErrorMethod
{

FIX_GOOD = 0, // No error, nothing to do
FIX_RESET_MODULE, // Reset module thru Reset() function
FIX_RESTART_MODULE, // Restart module thru unload/load
FIX_RESTART_SYSTEM, // Restart whole system ('warm start')
FIX_POWER_CYCLE, // Cold start system
FIX_MAINTENANCE // Call maintenance

};

// Basic Error Code
typedef unsigned long ErrorCode;

// Common severity using QtMsgType
typedef unsigned long Severity;

22 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Application Error Reporting
Example, cont.

// System wide error reporting

struct ErrorAV : BaseAV

{

ErrorCode code; //@key

FixErrorMethod fixMethod;

Severity severity;

// There is intentionally no string here!

// The GUI needs to have error messages in all supported languages

// Detailed error infos should be saved in the log

}; //@Extensibility FINAL_EXTENSIBILITY

// Topic name and QoS

const string TOPIC_ERROR_AV = "BASR.Common.ErrorAV";

const string PROFILE_ERROR_AV = "BASR.Data";

}; // end of namespace 'common‘

}; // end of namespace 'basr'

23 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Summary, Lessions Learned

§ Use QoS profiles and a minimum ‘understandable’ set of them

§ Structure Topic Names

§ Create ‘readable’ IDL files containing type, name and writer QoS profile

§ Use modules (namespaces) in IDL files to structure types

§ Use content filter and minimum separation to reduce traffic

§ Create writers before readers and never destroy them

§ Define an error reporting scheme based on keys

'Best Practices' or 'Do's'

24 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Challenges

§ Time Sync of all nodes is required
-The good news are that encryption is then also possible
-Typical symptom: Data flows only in one direction
-We used a local NTP server, GPS time or both
-Challenge: If the time is really ‚off‘, e.g. 1.1.1970, then a ‚jump‘ is needed and we need to wait

for time-sync before starting DDS apps

§ Discovery
-Discovery is not 'realtime'
-Default Discovery uses Multicast
- You do not want multicast via radio links
- WLAN falls back to lowest available speed on multicast frames
- Switches turn to hubs when IGMP is not enabled

-Static Discovery increases application startup time

when using DDS in Real-World-Applications

25 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Challenges

§ MaxMTU
-Yocto Linux typically has MaxMTU < 1500 and no fragments
-Discovery typecode size exceeds MaxMTU in real-world scenarios
-Topic data size can exceed MaxMTU

§ RTPS2 over narrow radio links
-Verbose, minimum header size > 200 bytes
-Compression negligible
- In our routing gateway the sender strips the RTPS2 header and the receiver attaches it again

(but this has some drawbacks and is a lot more complicated than it sounds)

§ Be aware that ‚normal‘ writers send UDP packets to all discovered readers separately
-This scales quickly, e.g. 10 writers to 10 readers = 100 UDP packets
-A multicast writer would reduce this to 10 packets

when using DDS in Real-World-Applications, cont

26 | Practical Aspects of using RTI DDS in UGV | RUAG | May 22nd, 2019

Thank you for your attention!

I’m looking forward to answer your questions

