
Copyright © 2018, Raytheon Company. All rights reserved.

RTI Connext Usage and Architectural Patterns
in Radar Product Line Software

George Lafortune
Greg Case
May 17, 2018

Approved for Public Release

Radar Product Line

5/22/18 2

Air and Missile
Defense Radar

And others…

Enterprise Air Surveillance Radar

• Common SW Baseline
• Common Team

• Governance

Radar Product Line Numbers
§ Millions - source lines of code

§ 100+ - typical number of servers per radar

§ Hundreds - approximate number of DDS topics

§ 64 MB /s - approximate throughput required over our
more stressing DDS connections

§ 26 GB - approximate max size of one of our larger send
queues for a reliable Data Writer

5/22/18 3

RTI Connext – What We Like and
Use Today
§ Comprehensive documentation
§ Responsive and high quality tech support
§ Tools (Admin Console, Monitor, DDS Spy, DDS Ping)
§ Developer license model
§ Prototyper

– Extensive use of Prototyper and Lua for test drivers and emulation of system
components

5/22/18 4

RTI Connext – What We Want To Use
In The Future
§ Extensible Types

– Maintain backwards compatibility

5/22/18 5

RTI Connext – What Could Be
Improved
§ Options for optimizing serialization performance
§ Documentation organization
§ Infiniband support
§ Application error notifications

5/22/18 6

Simplified Architecture of a Notional
Radar System

5/22/18 7

Command and
Control (External)

Tracks

Control Processing

Task
Orders

Signal
Processing

Antenna Interface
Detection Reports

Real-Time
Simulation

Receiver/
Exciters

Beamformer
Beam
Data
(IQ)

State and Mode Control Mission Control

Radar Events

Resource MgmtTrackersCalibration/FDFI

Beam
Data (IQ)

RadarEvents

Channel
Data (IQ)

DDS, ~500 usec latency

RDMA, 50 Gb/sec
UDP, ~100 usec latency

Antenna(s)

SW Component

SW Subsystem

Sys Subsystem

Use of DDS Domains

5/22/18 8

Combat Management
System
(CMS)

AMDR-S Radar Control Processor
Subsystem

(RCPS)

Antenna Interface
Subsystem

(AIS)

Digital Beamformer
Subsystem

(DBFS)

Digital Signal
Processing
Subsystem

(DSPS)

Real Time
Simulation
Subsystem

(RTSS)

External
CMS Domain

Internal Domain

§Single domain for
the Radar internal
Communication

§Separate domains
for external
interfaces

Use of DDS Partitions

5/22/18 9

§ Subsystems
communicate internally
on their own partitions
– Subsystems can be

developed by third
parties

– Avoids chances of topic
name conflicts

§ Have also proven useful
to configure an input
source dynamically
– E.g. Simulated Hardware

vs. Live Hardware
§ There is also a fault

tolerance application
(discussed later in this
briefing)

Combat System
(CS)

Radar
Radar Control

Processor (RCP)

Antenna
Subsystem (AS)

Digital
Beamformer

Subsystem (DBFS)

Digital Signal
Processing

Subsystem (DSPS)

Real-Time
Simulation

Subsystem (RTSS)

“Radar” “Radar”

“Radar”“Radar”

Radar_AS_Face_X”
“Radar_Dbf” “Radar_Dsp” “Radar_Sim”

“”

Microservices
§ What is a Microservice?

– A loosely coupled, independently deployable, fine-
grained service

– Separately compilable (e.g. .exe, .so, .a)
– A well-defined API, typically HTTP in the business

domain but can be any protocol

§ What is a Microservice Architectural Style?
– An approach to building a software application as a

suite of fined grained services

§ A Microservice Architecture is the opposite of
a Monolithic Architecture
– A Monolithic architecture groups all the functionality of

the system into a small number of large executables,
often just 1

§ A Microservice Architecture supports DevOps
– Independently testable and deployable fine grained

units

5/22/18 10

DEPLOYABLE UNIT

Tasking
Service

Search
Service

Analytic
Service

X
Service

Y
Service

Z
Service

Monolith

Tasking
Service

Search
Service

Analytic
Service

X
Service

Y
Service

Z
Service

DEPLOYABLE
UNIT

DEPLOYABLE
UNIT

DEPLOYABLE
UNIT

DEPLOYABLE
UNIT

DEPLOYABLE
UNIT

DEPLOYABLE
UNIT

Microservices

Product Line Architecture Style
§ Architectural style is somewhere between a Monolith and a very good

Microservices Architecture
§ Some of our library based services are very good examples of Microservices

– E.g. Frequency Selection

§ Some of our executables could be more optimally decomposed into Microservices
and be more independent of other components

5/22/18 11

Tracker.exe

Coarse
Gate Track Init Track Filter

Track
Update

Associate
Tracks

Branch
Tracks

DEPLOYABLE
UNIT

Coarse
Gate

DEPLOYABLE
UNIT

DEPLOYABLE
UNIT

DEPLOYABLE
UNIT

DEPLOYABLE
UNIT

DEPLOYABLE
UNIT

Current “Monolith”
Microservice Architecture

Track Init Track Filter

Associate
Tracks

Branch
Tracks

Track
UpdateResourceManager.exe

Tracker.exe
Control Logic

The SBPL “Distributed
Microservice” Architectural Pattern
§ Applicability

– Multiple clients within the system require a common lightweight service that
internally utilizes a globally consistent set of state data

§ Design Forces
– Service calls must have low latency
– Clients are distributed
– Internal data sets must be globally consistent
– Easy to incorporate in new client applications
– Support for safety critical processing

§ Participants
– State Provider: Component that provides data to the Microservice
– Client: User of the Microservice
– Microservice: Implements service function, returns results to clients

5/22/18 12

Microservice Design – V1

5/22/18 13

Microservice.exe

State

Client.exe

Writer

ServiceRequest
<<topic>>

Service Response
<<topic>>

ReaderWriter

Reader
Request
(arg1 , arg2)

Response
(data1 , data2)

StateProvider.exe

StateTopic
<<topic>>

Writer

Reader

Application

Service
Functions

DDS Api

V1 Limitations:
• Distributed service

latency too high
• Every Client re-

implements DDS
plumbing

V1 Solution:
• Microservice as a

single component
instance in the
system

• Exposed DDS API
• State provider

publishes data to
service

Microservice Design – V2

5/22/18 14

Microservice.lib

State

Client.exe

Request
(arg1 , arg2) Response

(data1 , data2)

State
Provider.exe

StateTopic
<<topic>>

Writer

Reader

Application

Service
Functions

C++ Api

V2 Solution:
• Implement

microservice as a
library

• State Provider
publishes to all
instances

• Provide a C++ API
to the microservice

• All DDS code
encapsulated within
the microservice

V2 Limitations:
• State Provider must

implement DDS plumbing
• Would like ack/nack for

safety critical state
messages

Microservice Design – V3

5/22/18 15

Microservice.lib

State

Client.exe

Request
(arg1 , arg2) Response

(data1 , data2)

State
Provider.exe

StateTopic
<<topic>>

Writer

Reader

Application

Service
Functions

C++ Api

V3 Solution:
• Encapsulate state publishing DDS

code in microservice with
associated C++ API

• State Provider instantiates service
using C++ API

• Add application ack/nack for safety
critical usages

Application
UpdateState (arg1 , arg2)

Microservice.lib

State

StateTopic
<<topic>>

Writer

Reader

Service
Functions

C++ Api

Example Radar Microservice –
Frequency Selection

5/22/18 16

Command and
Control (External)

Allowed
Frequencies

Control Processing

Signal
Processing

Antenna Interface
Detection
ReportsReal-Time

Simulation

Mission Control

RadarEvents

Resource MgmtTrackersCalibration/FDFI

Beam
Data (IQ)

State
Provider

Frequency
Select Svc

Frequency
Select Svc

Frequency
Select Svc

Client
Client

Frequency
Select Svc

Client

Client

Frequency
Select Svc

Microservices easily instantiated where needed in the system

Example Microservices in
Raytheon’s Radar Product Line

Service Description Data Set
Coordinate
Transform

Provides conversions among
different coordinate frames

Ship motion data

Frequency
Selection

Chooses RF frequency based on
client policy selection

• Allowed/disallowed
frequencies

• Jammed/clear
frequencies

Power Constraint Provides beam correlation
checks against defined set of
constrained power sectors

Power sector
definitions

Clutter Map Provides clutter information for
given location

Clutter Map Cells

Data Recording
Service

Provides services for real-time
data recording

Allowed/disallowed
collection points

5/22/18 17

Fault Tolerance
§ What is Fault Tolerance?

– The capability for a system to continue to operate with little or no degradation in
the presence of component or hardware faults

– For Raytheon’s Radar Product Line Software, the major driving requirement is
recovering from server or network failures

§ Design forces for Fault Tolerance in software
– Maintain consistent state
– Minimize interruption of service
– Easy to make new or legacy software components fault-tolerant

§ Nominal Architecture:

5/22/18 18

Server 1 - Online

Process A - Online

Process B - Online

Server 2 - Online Server 3 - Standby

Process A - Standby

Process B - Standby

Process C - Standby

One or more
Standby servers
provide redundancy
for Online servers
(e.g. N+1 model)

Process C - Online

Common Fault Tolerance
Approaches
Approach Description Latency Complexity

Cold Standby • Restart on failure
• Periodic checkpoints to disk
• State loaded on restart

High • Least complex
• Non-mission critical

systems

Warm Standby w/
State Checkpoint to
Disk

• Alive but inactive process
• Periodic checkpoints to disk
• State loaded on takeover

Medium • Medium complexity

Warm Standby w/
Real-time
Checkpointing

• Active process
• Real-time checkpointing

Low • High complexity

Hot Standby /
Shadow Processing

• Active process
• Requests / data handled in

parallel

Lowest • Highest complexity
• Best for stateless

processing

195/22/18

Fault Tolerance Challenge 1

5/22/18 20

Service.exe

Task
State

Controller.exe

Command
<<topic>>

Response
<<topic>>

ReaderWriter

Issues:
• Small variations in

conditions (time,
order, race conditions,
etc.) can cause
standby to get a
different answer

• After fail-over, status
may no longer be
consistent with
original request

Online
Reader Writer Service.exe

Task
State

Standby
Reader Writer

Commit
state

Reply Commit
state

Reply

Commands are
handled in parallel
by both Online and
Standby processes

Responses are only
received from Online
processes

Hot Standby Risks Inconsistent State

Fault Tolerance Solution 1

5/22/18 21

Service.exe

Task
State

Command
<<topic>>

Response
<<topic>>

ReaderWriter

• Checkpoints can support transaction-
like semantics where needed

• Application-level acknowledgement
ensures synchronous transaction
durability

Online
Reader Writer Service.exe

Task
State

Standby

Reader

Commit
state

Reply after
checkpointing Commit state

Writer
Checkpoint
<<topic>>

Acknowledge

Reader Writer

Controller.exe

Warm Standby With Realtime Checkpointing

Fault Tolerance Challenge 2

5/22/18 22

Service.exe

Controller.exe

Issues:
• Do not want standby to receive data

(except for checkpoints)

• In a large system (many entities), Discovery
can take a long time – increasing
interruption of service

Online
Reader Writer Service.exe

Standby

Participant

Participant

Fault detected –
Online fails over
to standby

Participant

Reader

Service not
restored until
standby entities
have discovered
endpoints

Writer

ReaderWriter

Standby entities
start disabled

Minimize Interruption of Service

Controller.exe

Fault Tolerance Solution 2

5/22/18 23

Service.exe

• Isolate standby entities via
different partitions so that
Discovery is complete prior to
failover

Online
Reader Writer Service.exe

Standby
Participant

Online entities use
normal partition

Participant

On failover,
service restored
once partition
QoS change is
propagated to
peers

Standby readers initially
use different partition

Reader Writer

online
<<partition>>

online
<<partition>>

standby
<<partition>>

Participant

ReaderWriter

Use Partitions to Reduce Recovery Time

Fault Tolerance Challenge 3

5/22/18 24

Tracker.exe

State (stale)

Controller.exe

State
<<topic>>

Reader

Issues:
• A failed process may still be

providing state updates based on
stale or invalid state during teardown

Failed
Writer

Tracker.exe

State (current)

Online
(was Standby)

Writer

State
Updates

State
updates

• If Ownership is
shared, readers
may receive
conflicting samples

• If online has higher
Strength, readers
may receive only
samples from failed
process

Samples from
failed process
conflict

Need to Fence Off Failed Nodes

Fault Tolerance Solution 3

5/22/18 25

Tracker.exe

State (stale)

State
<<topic>>

Reader

• Exclusive Ownership where standby
writers have higher Strength allows
readers to ignore stale / invalid
updates from failed processes

Failed
Writer

Tracker.exe

State (current)

Online
(was Standby)

Writer

State
Updates

State
updates

Standby writers use higher strength • Ownership is
transferred as
soon as standby
process begins
publishing each
instance

Controller.exe

Standby Has Higher Ownership Strength

Fault Tolerance Challenge 4

5/22/18 26

Application.exe

Issues:
• Many entities need to be

failover-aware

• Need to ‘touch’ many
parts of the code – can
be costly even when
common helpers are
available

Reader 1

…

Failover
Handling

Writer 1
Failover
Handling

Reader 2
Failover
Handling

Writer 2
Failover
Handling

Reader 3
Failover
Handling

Writer 3
Failover
Handling

Many Entities Must Be Failover-Aware

Fault Tolerance Solution 4

5/22/18 27

Application.exe

• Entities are registered
with registry during
initialization

• Registry handles all entity
updates as a result of
state change from
standby to operate

• Minimizes parts of the
code which need to be
modified to handle
failover – separation of
concerns

Reader 1

…

Writer 1

Reader 2 Writer 2

Reader 3 Writer 3

Entity Registry Failover
Handling

Entity Registry Handles Failover

Fault Tolerance Example
Step-by-Step

5/22/18 28

Task
State

Controller.exe

Service.exe
Online

Reader Writer Service.exe

Task
State

Standby

Writer

Writer Writer

Response
<<topic>>

Reader

Command
<<topic>>

Writer Reader

Status
<<topic>>

Writer Reader

online
<<partition>>

online
<<partition>>

standby
<<partition>>

strength:
0

strength:
1

Online writers use
online partition and
have strength 0

Standby writers use online
partition and have
strength 1, but are inactive

Standby readers use
standby partition

Online actively
checkpointing
to standby

Checkpoint
<<topic>>

Reader

Fault Tolerance Example
Step-by-Step

5/22/18 29

Task
State

Controller.exe

Service.exe
Online
(Failed)

Reader Writer Service.exe

Task
State

Online
(was Standby)

Writer

Writer Writer

Response
<<topic>>

Reader

Command
<<topic>>

Writer Reader

Status
<<topic>>

Writer Reader

online
<<partition>>

online
<<partition>>

online
<<partition>>

strength:
0

strength:
1

Fault detected,
failover initiated!

Standby reader
changes partition
QoS to online to
complete entity
discovery and begin
receiving commands

Standby takes
over
checkpointing

Failed online writers
fenced-off due to lower
strength – responses and
status now handled by
standby writers

Checkpoint
<<topic>>

Writer

DDS Enablers of Fault Tolerance
§ Decoupled publish-subscribe model

– Built-in Discovery allows application to avoid costly connection reconfiguration
during failover

§ Quality of Service
– Tunable on a per-topic, per-entity basis – so don’t need a single solution for all

use cases

– Example: Standby instances of
passive microservices can receive
online data rather than using
standby partition, simplifying
fault tolerance for microservices

5/22/18 30

Client.exe
Online

Freq
Service

Provider.exe
Online Freq Service

Client.exe
Standby

Freq
Service

online
<<partition>>

DDS enables effective Fault Tolerance solutions

