Distributed Robotic Architecture

Using Actin and DDS

Justin Keesling

Energid Technologies
www.energid.com
Overview

• Who is Energid?
• What is Actin?
• Actin with DDS
• Tasking with DDS
• Projects using DDS
• Live demo
Energid Technologies

- Develops software for simulation and control of any robotic system

- Actin software is at the core of our business
 - Actin SDK
 - Actin applications
 - Integration services

- Now a Teradyne company

- Cool videos: https://vimeo.com/energid
Actin Software

- General kinematics and dynamics model
 - Inverse and forward kinematics and dynamics
 - Kinematically redundant mechanisms
 - Fixed and mobile base manipulators
- General motion constraint and optimization framework
 - Dynamic collision avoidance
 - Joint limit and singularity avoidance
 - Strength optimization
 - Dynamic response to sensor data
- Adaptive tasking
 - Global path planning
 - Complex tool path motion control (EcScript)
 - Coordination of many robots and axes (Manipulation Director)
- General platform support
 - Easy integration with sensors and actuators
 - Kinematic model generation from CAD
 - Desktop applications for Windows, Linux, OS X
 - Real-time control on VxWorks, RT Linux, RTOS32, RTX64
Constraint Optimization

• End effector constraints
• Collision avoidance
• Joint limit avoidance
• Singularity avoidance
• Center of gravity

• Video
 • 3 HEBI Actuator Arms
 • 21 DOF Total
 • Frame end effector
Multi-Robot Coordination

• 5 Machines
 • Robot
 • Pipe Handler
 • Roughneck
 • Elevator/Lift
 • Slips

• Manipulation Director
 • Hierarchical tasking
 • Machine coordination
Collision Avoidance

- Collision exclusion maps
 - Self collision exclusion candidates
 - Static collision exclusion candidates
 - Dynamic collision exclusion candidates

- Video
 - UR5 (6-DOF)
 - Adaptive tasking
 - Dynamic collision avoidance
Kinematically Redundant Mechanisms

- Extra degrees of freedom allows optimizing for other constraints

- Video
 - 2 Theoretical 36-DOF “wedge actuator” arms
Global Path Planning

• Fanuc M-10iA/12 6 DOF arm

• Added turntable DOF

• Complex part inspection
 • 41 inspection points
 • Travelling salesman problem

• Additional constraints
 • Target has 36 LED emitters
 • Camera bar has 3 cameras
 • At least 4 LEDs visible to all 3 cameras
Real Time

• Video
 • HM Elfin 5 Robot (6-DOF)
 • Added linear rail
 • EcScript motion control
 • 1 ms Updates
Actin with DDS

• Started using DDS early 2013
 • Government customer required us to integrate Actin with their tools using DDS
 • Early RDS work indicated DDS would be a perfect fit

• Single-robot deployments
 • Increased demand for teleoperation

• Multi-robot deployments
 • One robot controller machine per robot
 • Communication between controllers
 • Commands, state synchronization, sensor feedback, hardware status
 • Scalable architecture
DDS Enables

• Flexible system architectures
 • Add new sensors, actuators, etc
 • Swap out components
 • Scalability
 • Redundancy

• Simplified communication between teams
 • Send the IDL, topic names, and QOS

• High degree of tunability through QOS

• Reduced development time!
Distributed Robot Control Architecture

Robot Controller
- DDS Common Layer
- DDS Tasking Layer
- DDS System State Layer
- DDS Sensor Layer
- Hardware Layer

Control Master
- DDS Common Layer
- DDS Tasking Layer
- DDS System State Layer
- DDS Sensor Layer
- Hardware Layer

Robot Controller
- DDS Common Layer
- DDS Tasking Layer
- DDS System State Layer
- DDS Sensor Layer
- Hardware Layer

tasks

robot states, task status, sensor values

pub

sub

© 2018 Energid Technologies Corporation. All rights reserved.
Tasking With DDS

- Manipulation Director

- DDS Tasking Implementation
 - Fundamentals
 - Topics
 - Sequence Diagram
 - Implementation Specifics

- Hierarchical Tasking
Manipulation Director

- Library of manipulation tasks
 - Low-level blocks used to build higher-level blocks
 - All blocks are reusable
 - Write to and read from XML
 - Extensible architecture

- Theater terminology
 - Director - directs the execution of a script
 - Cast - Assigns actors (robots) to play roles in the script
 - Scripts - Composed of scenes
 - Scenes - Composed of directions for the actors
 - Directions
 - Stage Directions - Non “speaking” instructions to actors
 - Manipulation Directions - The “speaking” lines … For a robot, this means “movement”
 - Poses
 - Reusable transformations
 - Can be fixed or relative
 - Used inside directions for defining positions and orientations
 - Cues

At some point, we lost the “plot” (of theater terminology)
Manipulation Director GUI
Tasking Fundamentals

• Tasking provider “provides” a resource to be tasked
• Tasking requester “requests” control of a resource
• Only one requester can have control of provider at a time
• Control is granted or revoked by the provider
• Control takes into account
 • Machine state (Manual vs. Auto)
 • Continuity of control
• Purpose
 • Manage objects in the manipulation director library
 • Manage task execution of manipulation director objects
• Not so “secret” sauce
 • Multiple keys
 • Content filtered topics
Tasking Topics

- TaskingControlRequest
 - Request control of a particular role
 - Keyed by role and UUID of the requester
- TaskingControlSessionStart
 - Informs a provider when control has been granted
 - When the instance is no longer alive, the requester no longer has control
 - Keyed by role and UUID of the requester
- TaskingControlCommand
 - Send a command to the role
 - Commands manage manipulation director library and execution
 - Keyed by role and UUID of the requester
- TaskingControlResponse
 - Send a response from the role to the requester
 - Responses indicate the success or failure of commands
 - Keyed by role and UUID of the requester
Tasking Sequence Diagram
Tasking Implementation Specifics

- **Tasking Requester**
 - Generates UUID
 - Publishes
 - TaskingControlRequest uuid=UUID
 - TaskingControlCommand uuid=UUID
 - Subscribes
 - TaskingControlSessionStart (role = 'roleName' AND uuid = 'requesterUuid')
 - TaskingControlResponse (role = 'roleName' AND uuid = 'requesterUuid')

- **Tasking Provider**
 - Starts tasking control session to grant control
 - Stops tasking control session to revoke control
 - Subscribes
 - TaskingControlRequest (role = 'roleName')

- **Tasking Control Session**
 - Direct connection to requester UUID
 - Publishes
 - TaskingControlSessionStart uuid=UUID
 - TaskingControlResponse uuid=UUID
 - Subscribes
 - TaskingControlCommand (role = 'roleName' AND uuid = 'requesterUuid')
Hierarchical Tasking

- Lower-level tasking provider
 - Provides lower-level manipulation director library
 - Single machine tasks
 - Single machine does not mean single role

- Higher-level tasking provider
 - Requests control of lower-level tasking providers
 - Provides higher-level manipulation director library
 - Direction sends tasking commands to lower-level providers
 - Multi-machine tasks

- How many levels are needed?
Projects Using DDS

- CANRIG Robotics
- URCaps Integration
CANRIG Robotics

- Formerly Robotic Drilling Systems
 - Acquired by NABORS in 2017
- Manual operations dominate global rig fleet
 - Remove people from the rig floor
 - Save lives
 - Save time
- Tripping is the biggest time consumer
- CANRIG Robots
 - Next-generation
 - Fully electric
 - Maintenance free
 - Design life = 10 years
 - Beautiful design!
URCaps Integration

- 6 DOF UR3, UR5, or UR10
- Compute node separate from robot controller
 - Runs Actin
 - Provides 3D rendered images
Live Demo

- User interface process (Actin Viewer)
- Robot simulation process (Actin Viewer)
- User interface process 2 (Actin Viewer)