

Distributed Robotic Architecture

Using Actin and DDS

Justin Keesling

Energid Technologies www.energid.com

Overview

- Who is Energid?
- What is Actin?
- Actin with DDS
- Tasking with DDS
- Projects using DDS
- Live demo

Energid Technologies

- Develops software for simulation and control of any robotic system
- Actin software is at the core of our business
 - Actin SDK
 - Actin applications
 - Integration services
- Now a Teradyne company
- Cool videos: https://vimeo.com/energid

Step 1

Defining Your System in Actin

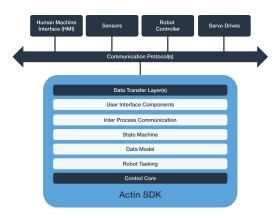
- Design your robot in CAD or as a simple kinematics model
- Import the CAD model
- Configure the kinematics and dynamics model

Step 2

Test Your System in Simulation

- Configure the robot's environment
- Tune the control system select motion contraints and optimizations
- Task the robotic system with EcScript or Manipulation Director

Step 3


Deploy Your Application

- Select or build the Actin transfer layer for your hardware components
- Generate the Actin runtime controller
- Test and deploy

Actin Software

- General kinematics and dynamics model
 - Inverse and forward kinematics and dynamics
 - Kinematically redundant mechanisms
 - Fixed and mobile base manipulators
- General motion constraint and optimization framework
 - Dynamic collision avoidance
 - Joint limit and singularity avoidance
 - Strength optimization
 - Dynamic response to sensor data
- Adaptive tasking
 - Global path planning
 - Complex tool path motion control (EcScript)
 - Coordination of many robots and axes (Manipulation Director)
- General platform support
 - Easy integration with sensors and actuators
 - Kinematic model generation from CAD
 - Desktop applications for Windows, Linux, OS X
 - Real-time control on VxWorks, RT Linux, RTOS32, RTX64

Constraint Optimization

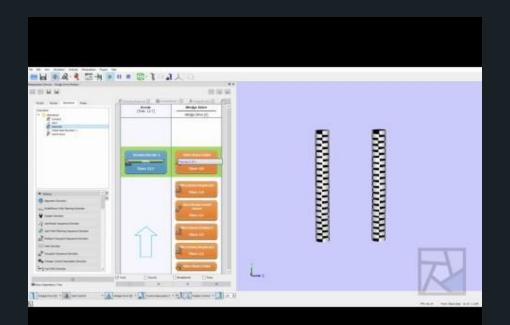
- End effector constraints
- Collision avoidance
- Joint limit avoidance
- Singularity avoidance
- Center of gravity
- Video
 - 3 HEBI Actuator Arms
 - 21 DOF Total
 - Frame end effector

Multi-Robot Coordination

- 5 Machines
 - Robot
 - Pipe Handler
 - Roughneck
 - Elevator/Lift
 - Slips
- Manipulation Director
 - Hierarchical tasking
 - Machine coordination

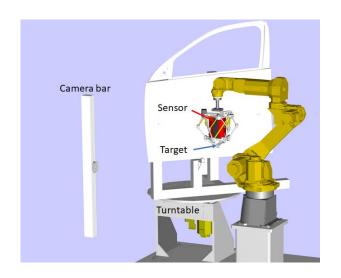
Collision Avoidance

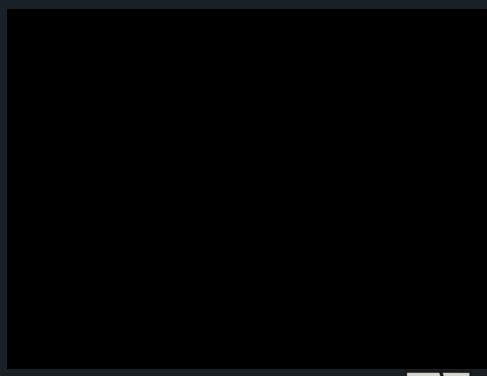
- Collision exclusion maps
 - Self collision exclusion candidates
 - Static collision exclusion candidates
 - Dynamic collision exclusion candidates
- Video
 - UR5 (6-DOF)
 - Adaptive tasking
 - Dynamic collision avoidance



Kinematically Redundant Mechanisms

- Extra degrees of freedom allows optimizing for other constraints
- Video
 - 2 Theoretical 36-DOF "wedge actuator" arms





Global Path Planning

- Fanuc M-10iA/12 6 DOF arm
- Added turntable DOF

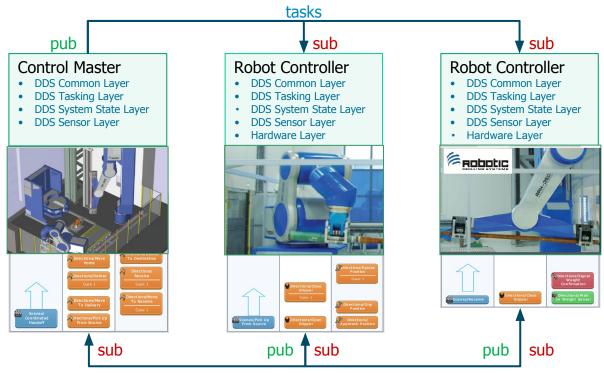
- Complex part inspection
 - 41 inspection points
 - Travelling salesman problem
- Additional constraints
 - Target has 36 LED emitters
 - Camera bar has 3 cameras
 - At least 4 LEDs visible to all 3 cameras

Real Time

- Video
 - HM Elfin 5 Robot (6-DOF)
 - Added linear rail
 - EcScript motion control
 - 1 ms Úpdates

Actin with DDS

- Started using DDS early 2013
 - Government customer required us to integrate Actin with their tools using DDS
 - Early RDS work indicated DDS would be a perfect fit
- Single-robot deployments
 - Increased demand for teleoperation
- Multi-robot deployments
 - One robot controller machine per robot
 - Communication between controllers
 - Commands, state synchronization, sensor feedback, hardware status
 - Scalable architecture



DDS Enables

- Flexible system architectures
 - Add new sensors, actuators, etc
 - Swap out components
 - Scalability
 - Redundancy
- Simplified communication between teams
 - Send the IDL, topic names, and QOS
- High degree of tunability through QOS
- Reduced development time!

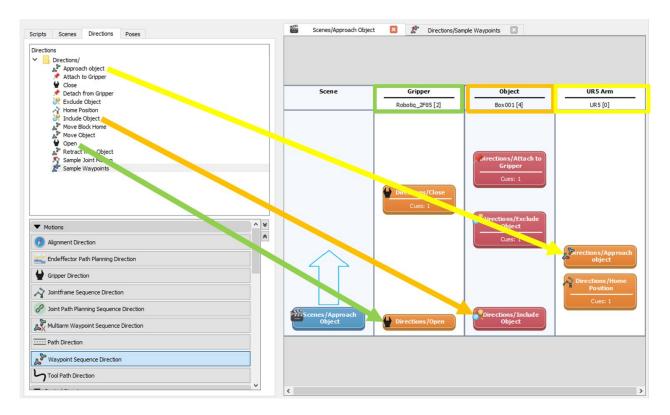
Distributed Robot Control Architecture

robot states, task status, sensor values


Tasking With DDS

- Manipulation Director
- DDS Tasking Implementation
 - Fundamentals
 - Topics
 - Sequence Diagram
 - Implementation Specifics
- Hierarchical Tasking

Manipulation Director

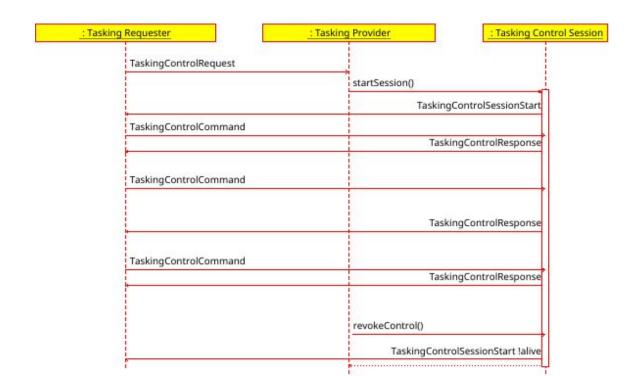

- Library of manipulation tasks
 - Low-level blocks used to build higher-level blocks
 - All blocks are reusable
 - Write to and read from XML
 - Extensible architecture
- Theater terminology
 - Director directs the execution of a script
 - Cast Assigns actors (robots) to play roles in the script
 - Scripts Composed of scenes
 - Scenes Composed of directions for the actors
 - Directions
 - Stage Directions Non "speaking" instructions to actors
 - Manipulation Directions The "speaking" lines ... For a robot, this means "movement"
 - Poses
 - Reusable transformations
 - Can be fixed or relative
 - Used inside directions for defining positions and orientations
 - Cues

At some point, we lost the "plot" (of theater terminology)

Manipulation Director GUI

Tasking Fundamentals

- Tasking provider "provides" a resource to be tasked
- Tasking requester "requests" control of a resource
- Only one requester can have control of provider at a time
- Control is granted or revoked by the provider
- Control takes into account
 - Machine state (Manual vs. Auto)
 - Continuity of control
- Purpose
 - Manage objects in the manipulation director library
 - Manage task execution of manipulation director objects
- Not so "secret" sauce
 - Multiple keys
 - Content filtered topics


Tasking Topics

- TaskingControlRequest
 - Request control of a particular role
 - Keyed by role and UUID of the requester
- TaskingControlSessionStart
 - Informs a provider when control has been granted
 - When the instance is no longer alive, the requester no longer has control
 - Keyed by role and UUID of the requester
- TaskingControlCommand
 - Send a command to the role
 - Commands manage manipulation director library and execution
 - Keyed by role and UUID of the requester
- TaskingControlResponse
 - Send a response from the role to the requester
 - Responses indicate the success or failure of commands
 - Keyed by role and UUID of the requester

Tasking Sequence Diagram

Tasking Implementation Specifics

- Tasking Requester
 - Generates UUID
 - Publishes
 - TaskingControlRequest uuid=UUID
 - TaskingControlCommand uuid=UUID
 - Subscribes
 - TaskingControlSessionStart (role = 'roleName' AND uuid = 'requesterUuid')
 - TaskingControlResponse (role = 'roleName' AND uuid = 'requesterUuid')
- Tasking Provider
 - Starts tasking control session to grant control
 - Stops tasking control session to revoke control
 - Subscribes
 - TaskingControlRequest (role = 'roleName')
- Tasking Control Session
 - Direct connection to requester UUID
 - Publishes
 - TaskingControlSessionStart uuid=UUID
 - TaskingControlResponse uuid=UUID
 - Subscribes
 - TaskingControlCommand (role = 'roleName' AND uuid = 'requesterUuid')

Hierarchical Tasking

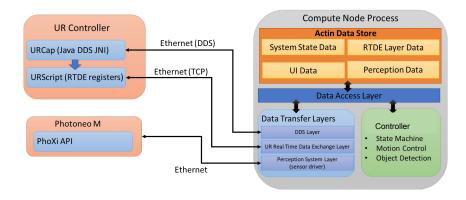
- Lower-level tasking provider
 - Provides lower-level manipulation director library
 - Single machine tasks
 - Single machine does not mean single role
- Higher-level tasking provider
 - Requests control of lower-level tasking providers
 - Provides higher-level manipulation director library
 - Direction sends tasking commands to lower-level providers
 - Multi-machine tasks
- How many levels are needed?

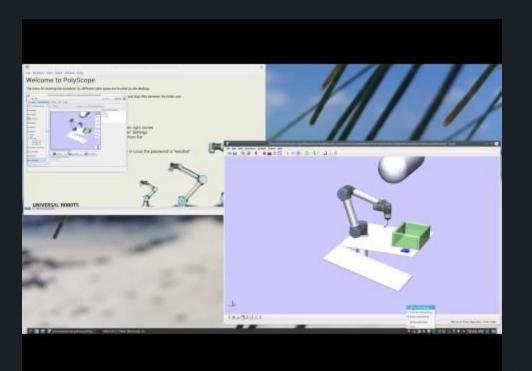
Projects Using DDS

- CANRIG Robotics
- URCaps Integration

CANRIG Robotics

- Formerly Robotic Drilling Systems
 - Acquired by NABORS in 2017
- Manual operations dominate global rig fleet
 - Remove people from the rig floor
 - Save lives
 - Save time
- Tripping is the biggest time consumer
- CANRIG Robots
 - Next-generation
 - Fully electric
 - Maintenance free
 - Design life = 10 years
 - Beautiful design!





URCaps Integration

- 6 DOF UR3, UR5, or UR10
- Compute node separate from robot controller
 - Runs Actin
 - Provides 3D rendered images

Live Demo

- User interface process (Actin Viewer)
- Robot simulation process (Actin Viewer)
- User interface process 2 (Actin Viewer)