

Security Hands On

Gerardo Pardo-Castellote, Ph.D. CTO Fernando Crespo Sanchez, Product Architect

Intro to DDS Security

Security Boundaries

- System Boundary
- Network Transport
- Host

Data & Information Flows

Approaches to Protect DDS

Transport Layer Security

Fine-Grained Security

Transport-Level Secure Data Transfer

- 1. Authenticate
 - Verify your identity
- 2. Securely exchange cryptographic keys
- 3. Use keys to:
 - Encrypt data
 - Add a message authentication code

Transport-Level Secure Data Transfer In RTI Connext DDS

Three Connext DDS transports available in Connext DDS

- RTI Secure WAN Transport
 - WAN UDP transport that uses UDP hole punching to traverse NATs
 - Optional transport authentication and encryption using DTLS
- RTI Secure DTLS Transport
 - LAN UDP transport
 - Transport authentication and encryption using DTLS
- RTI Secure TCP Transport
 - WAN/LAN TCP transport
 - Optional transport authentication and encryption using TLS

Transport Level Security

No Multicast Support No Support for Fine-grained Security Application 1 Application 1 RTPS Traffic DDS DDS PKI Certificate Exchange, Verification, TLS Handshake **Creation of Session Keys TLS Handshake** Protocol Protocol Encrypted, & Signed Traffic **TLS Record Protocol** TLS Record Protocol TCP/UDP/IP TCP/UDP/IP **Secure Discovery and Data Exchange**

DDS Security Standard

- DDS entities are authenticated
- DDS enforces access control for domains/Topics/...
- DDS maintains data integrity and confidentiality
- DDS enforces non-repudiation
- DDS provides availability through reliable access to data

...while maintaining DDS interoperability & high performance

Fine-Grained Data-Centric Security

- Access control per Topic
- Read versus-write permissions
- Instance-specific permissions

Threats

- UnauthorizedSubscription
- Unauthorized Publication
- Tampering & Replay
- Insider Attack

Local machine is assumed to be trusted

DDS Security Standard Covers Four Related Concerns

Pluggable Security Architecture

Overview of What Happens **Authenticate DP DP Creation Fails** Create DP **End-Point Creation Fails Create End-Points** Access OK? Mutual Authentication with a challengeresponse protocol Authenticate Ignore Remote DP **Discover Remote DP** Remote DP Learn permissions, establish shared secret and KxKeys Discover Remote End-Access OK? Ignore Remote End-Point **Points** Share Granular Keys using Granular Message KxKeys DP = Domain Participant Security Endpoint = Reader / Writer

Pluggable Architecture

Service Plugin	Purpose	Interactions
Authentication	Authenticate the principal that is joining a DDS Domain.	The principal may be an application/process or the user associated with that application or process.
	Handshake and establish shared secret between participants	Participants may messages to do mutual authentication and establish shared secret
Access Control	Decide whether a principal is allowed to perform a protected operation.	Protected operations include joining a specific DDS domain, reading a Topic, writing a Topic, etc.
Cryptography	Perform the encryption and decryption operations. Create & Exchange Keys. Compute digests, compute and verify Message Authentication Codes. Sign and verify signatures of messages.	Invoked by DDS middleware to encrypt data compute and verify MAC, compute & verify Digital Signatures
Logging	Log all security relevant events	Invoked by middleware to log
Data Tagging	Add a data tag for each data sample	

Built-in Plugins

SPI	Built-in Plugin	Notes
Authentication	DDS:Auth:PKI-DH	Uses PKI with a pre-configured shared Certificate Authority. DSA and Diffie-Hellman for authentication and key exchange Establishes shared secret
AccessControl	DDS:Access:Permissions	Governance Document and Permissions Document Each signed by shared Certificate Authority Security configuration per Domain and Topic Access control per Domain and Topic
Cryptography	DDS:Crypto:AES-GCM-GMAC	Automatic key distribution AES-128/192/256-GCM for encryption SHA1 and SHA256 for digest AES-128/192/256-GMAC for MAC Separate keys per DW and DR Transparent secure multicast
Logging	DDS:Logging:DDS_LogTopic	

Writer Message Security

- Encryption keys & MAC keys are generated per data writer
- These keys are securely distributed to data readers
- Distribution of these keys is done using other symmetric keys derived from the shared secret
 - Key distribution is transport independent
- Different parts of messages can optionally be protected per governance policy
- Data Delivery is independent of key distribution
 - May use any transport, including multicast

Access Control & Policy

- DDS Security allows for configuring & enforcing the privileges of each participant
 - Which domains it can join & what Topics it can read/write
- It also allows specifying & enforcing policies for the whole domain, e.g.
 - Which topics are discovered using Secure Discovery
 - Which Topics have controlled access
 - Encrypt or Sign for Secure Discovery
 - Encrypt or Sign for each secure Topic
 - What to do with unauthenticated access requests

Configuring & Deploying DDS Security

Gorvernance Document

Specifies how a domain should be secured

Built-in Plugins: XML Governance Document

- Specifies how a domain should be secured
- Signed by the Permissions CA
- Provided to the plugins using the PropertyQosPolicy on the DomainParticipantQos

```
<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"</pre>
   xsi:noNamespaceSchemaLocation="../schema/dds_security_governance.xsd">
   <domain_access_rules>
       <domain_rule>
           <domains>
               <id_range>
                   <min>0</min>
               </id_range>
           </domains>
            <allow unauthenticated participants>false</allow unauthenticated participants>
            <enable join access control>true</enable join access control>
            <discovery protection kind>ENCRYPT</discovery protection kind>
           <liveliness_protection_kind>ENCRYPT</liveliness_protection_kind>
            <rtps_protection_kind>SIGN</rtps_protection_kind>
            <topic_access_rules>
               <topic_rule>
                   <topic expression>*</topic expression>
                   <enable discovery protection>true
                   <enable_read_access_control>true</enable_read_access_control>
                   <enable write access control>true</enable write access control>
                   <metadata_protection_kind>ENCRYPT</metadata_protection_kind>
                   <data protection kind>ENCRYPT</data protection kind>
               </topic_rule>
           </topic access rules>
       </domain_rule>
   </domain access rules>
</dds>
```

Cryptographic SPI at the wire-protocol level

Permissions Document

- For each participant specifies:
 - What domains it can join
 - What Topics it can read/write
 - What Tags are associated with Readers & Writers

Built-in Plugins: XML Permissions Document

- Contains the permissions of the Domain Participants
- Signed by the Permissions CA
- Provided to the plugins using the PropertyQosPolicy on the DomainParticipantQos

```
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"</pre>
    xsi:noNamespaceSchemaLocation="../schema/dds_security_permissions.xsd">
    <permissions>
        <grant name="ParticipantA">
            <subject_name>C=US, ST=CA, 0=Real Time Innovations, CN=dtlsexample/emailAddress=me@rti.com</subject_name>
                <!-- Format is CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm] in GMT -->
                <not_before>2013-06-01T13:00:00</not_before>
                <not_after>2023-06-01T13:00:00</not_after>
            </validity>
            <allow_rule>
                <domains>
                    <id>0</id>
                </domains>
                <publish>
                    <topics>
                        <topic>Cir*</topic>
                    </topics>
                    <partitions>
                        <partition>P1*</partition>
                    </partitions>
                </publish>
                <subscribe>
                    <topics>
                        <topic>Sq*</topic>
                    </topics>
                    <partitions>
                        <partition>P2*</partition>
                    </partitions>
                </subscribe>
                <subscribe>
                    <topics>
                        <topic>Triangle</topic>
                    <partitions>
                        <partition>P*</partition>
                    </partitions>
                </subscribe>
            </allow_rule>
            <default>ALLOW</default>
        </grant>
    </permissions>
</dds>
```

Configuration Possibilities

- Are "legacy" or un-identified applications allowed in the Domain?
 - Yes (if configured) unauthenticated applications will:
 - See the "unsecured" discovery Topics
 - Be allowed to read/write the "unsecured" Topics
- Is a particular Topic discovered over protected discovery?
 - If so it can only be seen by "authenticated applications"

Configuration Possibilities

- Is the access to a particular Topic protected?
 - If so only authenticated applications with the correct permissions can read/write
- Is data on a particular Topic protected? How?
 - If so data will be sent signed or encrypted+signed
- Are all protocol messages signed? Encrypted?
 - If so only authenticated applications with right permissions will see anything

Key Benefits

More Powerful Than Other Secure Middleware Technologies

- Standard & Interoperable
- Scalable: Supports multicast
- Fine-grain: Control Topic-level aspect
- Flexible: Build your own plugins
- Generic: Works over any transport
- Transparent: No changes to Application Code!

Secure Services and Tools

Integration with Persistence Service, Routing Service, Queuing Service, ...

Secure Persistence Service

- Needs "read/write" permissions to the persisted topics
- Uses Governance file to determine how each Topic is protected.
- Uses its own per-Writer Key material
 - Stores WriterKey material in the database (encrypted)
 - Stores data in encrypted form
 - Replays data encrypted with WriterKey material
- Requires "-password" command-line to execute

Secure Routing Service

- Has 2 DomainParticipants hence:
 - 2 Identities, 2 Governance, 2 Permission files
 - Needs "read" permissions on the "Input" participant for the routed topics
 - Needs "write" permissions on the "Output" participant for the routed topics
- Output data protected according to Governance on output domain
- If Durable Writer History then
 - Stores data encrypted
 - Stores WriterKeys (encrypted) along with durable data

Secure(*) Queuing Service

- Has 1 DomainParticipant
 - Configured with Identity, Governance, Permissions...
 - Needs read permissions to the input (queued) topics e.g. "MyQueueTopicName"
 - Needs write permissions to the output topics, e.g.
 "MyQueueTopicName@MySharedSubscriberName"
 - Output protected according to governance for "*@MySharedSubscriberName"
- Queue producer need write permissions to "MyQueueTopicName"
- Queue consumers need read permissions to "MyQueueTopicName@MySharedSubscriberName"
- Data stored unencrypted

Secure Recording & Replay Service

- Has 1 DomainParticipant
 - Configured with Identity, Governance, Permissions
 - Needs read permissions to recorded topics
 - Needs write permissions to replay topics
 - Can store data data different ways
 - File Encryption (after recording stops it encrypts)
 - User Data can per Topic can choose:
 - NONE, Data, Data+Metadata encryption
 - Discovery data per buitin Topic can choose:
 - NONE, Data, Data+Metadata encryption

Cloud Discovery Service

- Only used to bootstrap
- Works with DDS Security without special configurations
- Can use secure transport e.g. (D)TLS

Secure Web Integration Service

- Has DomainParticipant on DDS side
 - Configured with Identity, Governance, Permissions
- Uses HTTPS on the web-client side
 - Clients identified by a Client-API-Key
 - Only clients with valid Client-API-Key can connect
 - All clients can access the Topics and Domains that have been granted DDS permissions

Secure Database Integration Service

- Has one DomainParticipant on DDS side
 - Configured with Identity, Governance, Permissions
 - Needs read permissions to topics stored
 - Needs write permissions to topics monitored
- Decrypts DDS data before storing. The database itself may provide its own encryption if so configured.

Tools

- Can participate in secure domain
- Need Identity, Governance, Permissions to join DDS domain
 - Need read permissions to user Topics to display data
- Monitoring & Administration Domain needs separate security configuration
 - Need read permissions to Monitoring Topics
 - Need write permissions to Administration Topics
- Admin Console
 - Single configuration for all domains it joins
 - Single Identity
 - Governance and Permissions can vary per Domain
- Monitor UI, Ping, Spy
 - Single configuration for all domains

Not the friendliest configuration.
Usability to be enhanced

Built-in Monitoring and Administration Topics

- DDS Core Monitoring Topics
- Distributed Logging: 2 Topics
- Service Monitoring and Administration Topics (see respective user's manuals)
 - Routing Service Monitoring & Admin
 - Recording Service Admin
 - Persistence Service Admin
 - Queuing Service Monitoring & Admin

Secure Labview

- Configuration per DomainParticipants
 - Separate identities and authorities for all domains
 - Separate governance and permissions specific to each DomainId
- Needs read/write permissions according to the topics used in each domain

Prototyper and Connector

- Uses XML application Creation to configure DomainParticipants
- Security configuration per DomainParticipant
 - Authorities, Identity, Governance, Permissions can vary per DomainParticipant

Some examples

Attack scenarios

- 1. Unauth Pub using DDS
- 2. Attack on Data (network tamper tcpwrite)
- 3. Attack on Meta-Data (network tamper tcpwrite)
- 4. Unauth Subs with DDS app
- 5. Unauth Network Data Snooping (using Wireshark)
- 6. Unauth Network Meta Data Snooping (using Wireshark)
- 7. Discovery snooping

Protecting against the attacks

- 1. Unauth Pub using DDS
 - Require write permissions
- 2. Attack on Data (network tamper tcpwrite)
 - Require message signing (DATA, Submessage, RTPS)
- 3. Attack on Meta-Data (network tamper tcpwrite)
 - Require message signing (Submessage, RTPS)
- 4. Unauth Subs with DDS app
 - Require read permissions
- 5. Unauth Network Data Snooping (using Wireshark)
 - Encrypt (Data or Submessage)
- 6. Unauth Network Meta Data Snooping (using Wireshark)
 - Encrypt (Submessage)
- 7. Discovery snooping
 - Encrypt discovery

Performance impact

Configuration	32B	1KB	64KB
No Security	38 usec	55 usec	615 usec
	580 Mbps	975 Mbps	990 Mbps
DDS Security. No protection	38 usec	55 usec	615 usec
	580 Mbps	975 Mbps	990 Mbps
Signed RTPS (SRTPS)	45 usec	65 usec	690 usec
	523 Mbps	965 Mbps	990 Mbps
SRTPS + Encrypted Data	54 usec	70 usec	803 usec
	500 Mbps	925 Mbps	990 Mbps
SRTPS + Encrypted Submessage	56 usec	74 usec	808 usec
	490 Mbps	959 Mbps	990 Mbps
SRTPS + Encrypted Submessage	58 Usec	77 usec	916 usec
+ Encrypted Data	480 Mbps	917 Mbps	990 Mbps

Cryptographic SPI at the wire-protocol level

