
rti.com

ISO 26262 Compliance Using
Approved Software Components
for Road Vehicles

WHITEPAPER

A VEROCEL AND RTI WHITEPAPER

Joe Wlad, Vice President, Business Development, Verocel, Inc.
David Barnett, Vice President, Products and Markets, RTI
Bob Leigh, Director of Market Development, RTI

INTRODUCTION

Software-driven systems are now the mainstay of innovation
in every industry. Nowhere is this trend more profound
than in automotive applications. Use of software in cars has
spread from basic system diagnostics to information and
entertainment systems to complete autonomous driving
features. Modern vehicles are now shipped with tens of millions
of lines of software that manage engine and transmission
controls, braking, steering and a host of diagnostic information
on every subsystem. This trend has compelled automotive
designers to address safety in a way that includes system,
hardware and software design.

There are many standards and guidance documents that apply
to the development of software for safety-related applications,
but most are unique to a given industry. For example, the
aviation industry uses RTCA/DO-178C, industrial developers
may use IEC 61508 and medical device manufacturers may use
IEC 62304. The automotive industry has adopted ISO 26262
as its functional safety standard for electronic systems which
include both hardware and software. ISO 26262 was adapted
from IEC 61508 and it has many common requirements, but it
also has some unique differences, especially in areas related
to determination of safety levels.

A common question from our base of customers is how do you
use commercial-off-the-shelf (COTS) software (that may or
may not have a proven safety pedigree) in a system destined
for ISO 2626 approval? Before examining how to apply COTS
software in an ISO 26262 system, you first need to understand
the content and organization of the ISO 26262 standard.

ISO 26262, Edition 1 is composed of ten parts and covers the
safety lifecycle aspects of electric and electronic automotive
systems. Figure 1 below is taken from ISO 26262 and
summarizes the key requirements of each part. Parts 3 through
7 are the core parts that deal with product development from
the concept phase through design and production. An outline
of the ten sections is given below.

Following is a brief description of what each part of the ISO
26262 sections entails:

•	 Part 1, Vocabulary: provides a definition and description
of terms used in the standard.

•	 Part 2, Management of Functional Safety: provides
requirements and guidance on how the organization and
internal processes will be used during development and
post-release.

•	 Part 3, Concept Phase: provides requirements and
guidance for item definition, description of the safety
lifecycle including the activities and the hazard analysis
and risk assessment.

•	 Part 4, Product Development: System Level: provides
requirements and guidance on development of system
requirements, safety requirements, safety concept,
system design, integration testing, safety validation,
safety assessment and product release.

•	 Part 5, Product Development: Hardware Level: provides
requirements and guidance for initiation of hardware
product development, hardware safety requirements,
hardware design which includes evaluation of hardware
architectural metrics and potential safety goal violations
due to hardware failures.

http://www.rti.com
http://www.rti.com

WHITEPAPER • ISO 26262 COMPLIANCE USING APPROVED SOFTWARE COMPONENTS FOR ROAD VEHICLES

2 • rti.com

•	 Part 6, Product Development: Software Level: provides
requirements and guidance for initiation of software
product development, specification of software safety
requirements, software design, unit implementation, unit
testing, integration testing and verification of software
safety requirements.

•	 Part 7, Production and Operation: provides requirements
and guidance for development and maintenance of a
production process for safety-related elements used in
road vehicles as well as achieving functional safety in the
production process.

•	 Part 8, Supporting Processes: provides guidance and
requirements for overall safety management, interfaces
within distributed developments, configuration

management, change management, verification,
documentation, use of tools, qualification of hardware
and software components and proven-in-use arguments.

•	 Part 9, ASIL (Automotive Safety Integrity Level)-oriented
and Safety-oriented Analyses: provides guidance and
requirements for ASIL decomposition (system, hardware,
software and across components) such that safety goals
are inherited through safety requirements as well as
failure analyses and safety analyses.

•	 Part 10, Guideline (Informative): provides readers the key
concepts of ISO 26262, differences with IEC 61508 and
additional details on ASIL decomposition, safety cases,
hazard analyses and risk assessments.

1. Vocabulary

2. Management of Functional Safety

2-5 Overall Safety Management 2-6 Safety Management During
Development

2-7 Safety Management after release

3. Concept Phase

3-5 Item Definition

3-6 Initiation of
Safety Lifecycle

3-7 Hazard Analysis
and Risk Assessment

3-8 Functional Safety
Concept

7. Production and
Operation

7-5 Production

7-6 Operation,
Service and

Decommissioning

4. Product Development: System Level
4-5 Initiation of

Product Development
at System Level

4-6 Specification of
Technical Safety

Requirements

4-7 System Design

4-11 Release for
Production

4-10 Functional
Safety Assessment

4-9 Safety Validation

4-8 Item Integration
and Testing

5. Product Development:
Hardware Level

5-6 Specification of Hardware Safety
Requirements

5-5 Initiation of Product
Development at Hardware Level

5-7 Hardware Design

5-8 Hardware Architectural Metrics

5-9 Evaluation of Violation of Safety
Goal due to Random HW failures

5-10 Hardware Integration and
Testing

6. Product Development:
Software Level

6-6 Specification of Sofware Safety
Requirements

6-5 Initiation of Product
Development at Software Level

6-7 Software Arch. Design
6-8 Software Unit Design

6-9 Software Unit Test

6-10 Software Integration and
Testing

6-11 Verification of Software Safety
Requirements

8. Supporting Processes

8-5 Interfaces within Distributed Environments 8-10 Documentation

8-6 Specification and Management of Safety Requirements

8-7 Configuration Managements
8-8 Change Management

8-9 Verification

8-11 Qualification of Software Tools

8-12 Qualification of Software Components
8-13 Qualification of Hardware Components

8-14 Proven in Use Argument

9. ASIL-oriented and Safety-oriented Analyses
9-5 Requirements decomposition with respect to ASIL

Tailoring

9-6 Criteria for coexistence of elements 9-8 Safety Analyses

9-7 Analysis of Dependent Failures

10. Guideline on ISO26262 (informative)

Figure 1: ISO 26262 Processes and Requirements (ref. ISO 26262)

Each subsection of ISO 26262 is formatted in a similar
way. The document provides a list of objectives for
each general requirement (e.g., initiation of product
development at the software level), inputs (e.g.,
safety plan), requirements (e.g., activities for product
development at the software level shall be planned) and
work products (e.g., software verification plan). From
a holistic point of view, all the sections of ISO 26262
must be addressed (at the appropriate Automotive
Safety Integrity Level) to be considered compliant. The
high-level steps to compliance will include creation and
approval of a safety plan, safety goals and safety case
along with a complete safety lifecycle with bi-directional
traceability. The activities and work products will include

verification, validation, independent assessment (by an
accredited agency) and a complete list of documentation
supporting the required activities.

Additionally, the structure of ISO 26262 is encapsulated
in a way that permits activities, validation and assessment
for each major part of development to take place
independently. Therefore, one conceivably can take a
hardware or software component, assess and approve it
in one system or element and then reuse the approval in
other systems and assessments. In fact, part 8-12 and 8-13
of ISO 26262 directly address requirements for approval of
software and hardware components, respectively.

http://www.rti.com
http://www.rti.com

WHITEPAPER • ISO 26262 COMPLIANCE USING APPROVED SOFTWARE COMPONENTS FOR ROAD VEHICLES

3 • rti.com

ISO 26262, PART 6: SOFTWARE REQUIREMENTS

As stated earlier, part 6 is a core process requirement of ISO
26262 and as such does not include supporting processes of
functional safety managements, configuration management
and change management and more. The part 6 requirements
are specified in a waterfall model of development and
verification. While ISO 26262 does not assume any particular
model of software development (agile, iterative, etc.,) it
is convenient to document requirements in a way as if the
software were designed in a waterfall model. In fact, other
software certification guidance and standards such as DO-
178C and IEC 61508 are written in a similar manner. The first
requirement in developing software to be compliant with ISO
26262 is to initiate a safety plan and software verification plan.
These plans would of course be supported by other process
plans (defined in parts 2 and 8 of ISO 26262).

Once the initiation activities are complete, the specification of
software safety requirements process takes place. Here there
is an inexorable link to the safety concept and overall system
design. The system design and/or hardware design will place
limitations and burdens on software and these constraints
need to be considered as part of the requirements process.
A good candidate for a software component approved under
ISO 26262 would likely have a well-defined and exposed
interface into any system or hardware design. This does not
mean that any system or hardware would support a given
software component but that any limitations or conditions
be exposed to an integrator (for example, memory and CPU
constraints would be specific requirements if needed). The
work products resulting from this phase include a software
requirements specification, refined hardware-software
interface specification and results of the software verification
activities.

The software architectural design process defines the
requirements that permit the software to be written
without ambiguity. The design may be specified in a
number of ways (formally or semi-formally) and ISO 26262
has recommendations on what notations should be used
depending on the required ASIL. Additionally, ISO 26262
specifies properties of software design that are conducive to
safety elements (such as restrictions on size and complexity).
If the design process employs partitioning of software
components, then additional requirements are imposed to
demonstrate that freedom from interference is preserved.
The methods for verification of the software design varies
by ASIL but for the higher criticalities, design walkthroughs,
inspections and control and data flow analyses are either
recommended or highly recommended. The work products
resulting from the design process are a software design
specification, failure analysis report (if partitioning is used)
and documented verification results.

The software unit design and implementation phase is
commonly known as the coding phase, where the software
requirements and design information are used to produce
software modules. Requirements for the coding phase
include having consistent interfaces, a robust implementation,
verifiability and testability, among others. ISO 26262 requires
that the implementation depends on design detail that is
sufficient to write each module or function. In other words,
if low-level requirements or design information is not
uniquely traceable to software functions, a compliance gap

may exist. The properties of the implementation required
by ISO 26262 include no recursions, limited use of pointers,
no unconditional jumps and more. The verification activities
for software implementation include static code analysis,
compliance with coding standards, control flow analysis and
data flow analysis and compliance (including traceability)
with stated requirements and design data. The outputs of
this phase include verification results and completed software
implementation.

The software unit testing phase may appear to be misleading
in the sense that it is simply structural unit testing of individual
software modules. ISO 26262 requires that the testing include
verification of proper implementation of requirements and
design and therefore the test cases should be created directly
from the requirements and not from the implementation.
Additionally, the unit test phase should demonstrate that no
unintended behavior exists in the implementation and that
the implementation is robust (e.g., can respond gracefully to
abnormal input conditions). Completeness and absence of
unintended behavior is demonstrated by showing the required
coverage for the associated ASIL (e.g., statement, decision
or modified condition/decision coverage). The outputs of
this phase includes a verification report demonstrating the
test results are correct, complete and produced the required
coverage.

The software integration and testing phase is intended to
demonstrate that software elements (or components) verified
in the software unit testing phase can be fully integrated and
completely tested. The integration phase may involve both
safety and non-safety related elements. Integration testing will
demonstrate correctness of the hardware-software interface
as well as verify compliance with the software architectural
design. Integration testing includes requirements-based
tests, integration tests, fault-injection tests, resource usage
tests (stack, heap and execution times among others) and
ideally should be performed on the actual target hardware
of the software application or applications. The metrics that
apply to integration testing are function coverage and call
coverage. The functional and call coverage tests may reveal
software that is not exercised and in these cases, the software
should be removed or otherwise declared as deactivated. An
analysis of deactivated code should be done to confirm that
presence of the deactivated code does not impair operation
of the verified software. It is assumed that the deactivated
code is not dead code in the sense that it has no traceability
to requirements since the unit testing phase should expose
any dead code. The outputs of this phase are the complete
integrated software and the verification report confirming
successful completion of the integration testing objectives.

The verification of software safety requirements is the last
stage of software verification in ISO 26262. This stage is used
to confirm the software requirements are met in the actual
target environment. Up to this point, testing and verification
may take place on simulated hardware or reference hardware
not intended to be used in the actual production vehicle.
The test environment at this stage may be the actual vehicle,
integration test bench or network environments that replicate
the actual vehicle architecture related to the software under
test. The outputs of this phase is the verification report
confirming successful completion of the testing objectives in
the actual hardware environment.

http://www.rti.com
http://www.rti.com

WHITEPAPER • ISO 26262 COMPLIANCE USING APPROVED SOFTWARE COMPONENTS FOR ROAD VEHICLES

4 • rti.com

COTS APPROACH TO SATISFY PART 6 REQUIREMENTS

The organization of ISO 26262 Part 6 and other ISO parts are
highly conducive to approval, assessment and reuse of COTS
software components intended to be used in a variety of
applications. First, the organization of the software lifecycle
requirements and activities in part 6 are staged, meaning
that the outputs of one phase are the inputs to the next.
There are 3 levels of software testing defined in part 6 and
each of these testing is the result of increased software
integration. For example, a software component developer
may test a component such as a distributed data service
or software bus on reference hardware that may later be
integrated into an automotive control system. In this case the
software component developer would satisfy a subset of the
requirements in part 6 (as well as other parts) and leave the
remaining compliance objectives to the integrator.

The other parts of ISO 26262 that are relevant to software
components include part 2 (Management of Functional Safety)
and part 8 (Supporting Processes). The software component
developer would need to demonstrate that its internal
planning processes are aligned with part 2 requirements. At a
minimum, this would include a functional safety management
plan and a quality management plan as well as evidence of a
safety culture and personnel who are trained and responsible
for enforcing the safety culture in both the development
and production phases. Additional plans that would be
required (and defined in the safety plan or quality plan)
are the verification plan, validation plan and test plans that
demonstrate adherence to ISO 26262 requirements. Once a
supplier can support the requirements of part 2, they have a
framework to ensure their software developed under part 2
requirements can support the other parts of ISO 26262.

The planning process will also include references to any
applicable tool qualification plans. This could include software
modelling tools, coverage analysis tools and any other tools
used in the development or verification activities.

ISO 26262 part 8 is relevant for software component
suppliers. Part 8 defines requirements for documentation
control, configuration management, change management and
requirements for qualification of tools used under ISO 26262.
Clause 12 of part 8 defines the requirements for qualification
of software components, thereby making explicit the notion
that approval of software components under ISO 26262 is
possible.

The requirements to qualify a software component under
clause 12 of part 8 include:

•	 Requirements that address functionality, resource usage,
response times, behavior under failure conditions and
robustness

•	 Description of the configuration, interfaces and how
to integrate the component, description of operation
under abnormal conditions and a description of known
limitations and workarounds (to include both existing
defects and limitations)

•	 Verification results showing full coverage of all applicable
software requirements, including robustness for normal
and abnormal conditions and including the required
structural coverage analysis applicable to the proposed
ASIL

•	 Documentation of the software identification and
configuration, targeted ASIL, hardware compatibility
limitations, organization performing the qualification and
the results of the verification measures applied to the
software component

•	 The qualification results and the validity of the results
must be verified and, if required, additional activities may
need to be performed

The last point above becomes a key factor in determining the
value of software component reuse in ISO 26262. Establishing
the validity of the qualification results in a different
environment will always compel some additional activities on
the part of the integrator. If the supplied software component
does not adequately document the scope of usage, approval
and limitations, the integrator may be challenged in trying to
apply ISO 26262 credit for the component in their respective
environment. Additional information on considerations for
using qualified software components is presented below.

RTI CONNEXT® DDS MICRO AS AN ISO 26262 QUALIFIED
SOFTWARE COMPONENT

Real-Time Innovations, Inc. (RTI) has a certifiable version of
its Connext DDS product that is widely used in mission- and
safety-critical applications. Connext DDS provides software
developers and integrators with high-level interfaces for
distributing real-time data between devices, applications
and subsystems. For example, Connext DDS can be used
to stream video, radar and LIDAR data to analytics and
autonomous driving applications as well as to integrate
those applications with traditional ECUs. Connext DDS is
often referred to as “communications middleware” since it
is a library that sits between applications and the underlying
operating system and network stack, providing developers
with high-level publish/subscribe interfaces that abstract low-
level networking details.

Connext DDS Cert supports the DDS (Data Distribution
Service) family of standards and is a certifiable middleware
available with a complete, commercially supported
certification package to support ISO 26262 certification,
including ASIL-D. The package includes all of the evidence
required by a certification authority such as TÜV SÜD.

http://www.rti.com
http://www.rti.com

WHITEPAPER • ISO 26262 COMPLIANCE USING APPROVED SOFTWARE COMPONENTS FOR ROAD VEHICLES

5 • rti.com

Using certified middleware that conforms to a widely used
industry standard has a number of important benefits:

•	 Significant cost savings: by significantly reducing the
amount of custom communications and integration
logic required, Connext DDS Cert can save tens or
even hundreds of thousands of lines of code, avoiding
potentially millions of dollars in certification cost.

•	 Reduced risk: to develop safety software, a stringent set
of procedures must be followed making the software
expensive and risky to develop – or redevelop – if these
procedures are not followed in the original development.

•	 Leverage experience: RTI has used DDS in many mission-
and safety-critical industries. The software, DDS standard,
and certification package are developed based on deep
architecture experience from these 1000+ projects.

•	 Reliability: a new standard or custom development effort
does not have the years of project experience and in-field
deployments that demonstrates reliability over the long
term.

•	 Interoperability: DDS is supported by a number of
vendors and interoperability is ensured with frequent
testing against the standard and between the leading
vendors.

•	 Open Architecture: Connext DDS aligns with many open
architecture initiatives including the Future Airborne
Capability Environment (FACE), UAS Control Segment
(UCS) Architecture, and Open Mission Systems (OMS).

•	 Component Isolation: perhaps the most important benefit
of certified middleware, a communications framework
certified to the highest safety standard will isolate the
various software components of a system and allow them
to be certified to different safety levels, even when they
communicate or share information.

Certified middleware can continue to return costs savings
through the entire product life cycle. After the initial costs
savings in development and certification, the combination of

component isolation and the loose coupling of applications
can reduce maintenance cost and life cycle development
costs by allowing upgrades and re-certification of individual
components without re-certifying unmodified portions
of a system. These costs savings can dwarf the original
certification cost over the life of the product and can be an
important differentiator of any software system.

In the Automotive market, this especially applies to in-car
advanced driver assistance system (ADAS) and autonomous
drive applications where multiple software components must
share data. In a well architected system, these interdependent
systems should be loosely coupled and will need varying
levels of certification, depending on their function. For
example, a sense-and-avoid braking system would likely
need certification to ASIL-D and any software critical to the
sensing, decision making and resulting action would need this
certification (i.e., sensors, ECUs, software algorithms, braking
and steering modules). However, functions like navigation and
path planning may need to interact with some of the same
components but would likely need a much lower certification
level or no certification at all. Without certified middleware to
isolate and separate these functions, every component would
need to be certified to the highest certification, which would
be very expensive and would limit the possible features and
functions of a system.

CONSIDERATIONS FOR USING ISO 26262 QUALIFIED
SOFTWARE COMPONENTS

As stated above, ISO 26262 part 8, clause 12 addresses the
requirements for software reuse. Reuse could apply to a
vendor’s own software or COTS software procured from a
third party. Use of COTS components create some obstacles
for integrators when trying to approve these components due
to lack of familiarity, use of different standards and plans and
likely different verification methods and tools. Even though
the COTS supplier can provide the required documentation
and data to substantiate ISO 26262 compliance, the
integrator is still responsible for obtaining ultimate approval
for its use. In Verocel’s experience, software components for
use in ISO 26262-approved systems should have the following
characteristics:

http://www.rti.com
http://www.rti.com

WHITEPAPER • ISO 26262 COMPLIANCE USING APPROVED SOFTWARE COMPONENTS FOR ROAD VEHICLES

6 • rti.com

•	 Have few, if any, hardware dependencies

•	 Be easily portable to varying hardware platforms

•	 Have clear boundaries with other software components
and hardware

•	 Be provided in binary or pre-linked form, obviating the
need for rebuilding

•	 Be of limited complexity

•	 Be adaptable for modification and expansion with
minimal change impact

The characteristics defined above offer both economic,
technical and certification value to both the supplier and
user. It is expected that any approved software component
will be used in a variety of applications or it would not be
of much use to an integrator. Examples of good reusable
software components are operating systems, communication
and messaging software (such as RTI Connext DDS Cert),
language and graphics libraries and file system interfaces,
among others. Verocel has performed certification activities
to each of these software components for various customers
across aerospace, industrial and medical industries.

Verocel has learned that by providing guidance on how to use
and apply the software component and its certification data
into a variety of applications, the integrator’s certification
burden and risk can be minimized. A software component
approved under ISO 26262 should include the following
data and information so the integrator can maximize their
familiarity with the component and represent it more easily
when submitted for ISO 26262 approval.

•	 ISO 26262 Compliance Certificate from an approved
entity (such as TüV).

•	 Software Safety Plan: The safety plan defines the software
component and provides an overview of the compliance
sought. It also initiates the software planning process and
provides an overview of each lifecycle stage, the inputs,
activities and outputs of each stage.

•	 Functional Safety Manual: this document provides a
summary of the software component, its characteristics,
configuration and pedigree of approval under ISO 26262
(including maximum ASIL usage). Additionally, it should
include a list of open problems, a list of hazards or
vulnerabilities and a summary of workarounds for those
problems and vulnerabilities.

•	 Compliance Matrix (may be part of the safety manual):
this matrix shows the Parts 2, 6 and 8 objectives that the
software component fulfils. The matrix summarizes each
requirement, the associated evidence of compliance and
to what extent credit is taken for each objective. For any
objectives where full credit is not taken, a summary of the
required activities by the integrator should be included.

•	 Configuration Index or Version Description Document:
provides an unambiguous report on the exact
configuration of the software component (source and
binary) including configuration of any associated build
tools, environment and all documentation associated
with the approved component. Methods of how to ensure
binary identicality of the software component in the
user’s environment should be provided.

•	 User’s Guides and Manuals: if not provided as part of the
safety manual, guides and manuals should be provided
describing how to install, operate and used the software.
Included would be description of the interfaces along
with any limitations on use of those interfaces.

•	 Verification Results: the verification results would include
information on reviews of requirements, design and code,
test cases and results. Also included are the test results
and coverage analysis for the software component.

•	 Test Vectors: the supplier should be furnished with a
copy of the test vectors so they can repeat the test cases
in their environment as a means to establish equivalence
to the results supplied by the component developer.

•	 Tool Qualification Data and Results: documents showing
the tool qualification plan, tool qualification level and
qualification results should be included, especially if
the integrator needs to make use of these tools in their
environment.

•	 Vulnerability Analysis or Hazard Analysis: this document
would provide details on the hazards and vulnerabilities
summarized in the safety manual. This information will
give the integrator additional insight into the rationale
behind each hazard and mitigation technique. This
information will assist the developer in composing their
safety analysis at both the system and hardware levels.

•	 Traceability Data: this information shows direct linkages
between requirements, design, code, test cases and
results as well as traceability to reviews of each activity
including change management of each lifecycle data
item.

•	 Partitioning Analysis (optional): a partitioning analysis
may be required if the software component supports
some level of ASIL separation (such as an operating
environment). The partitioning analysis will show the
integrator how isolation is preserved should components
at a lower level of ASIL fail. The partitioning analysis will
include some assumptions and perhaps limitations if
there are dependencies on the hardware or a hardware-
software interface

•	 Integration Guide: if not already included as part of the
safety manual, an integration guide provides a summary
of the information provided in safety manual, compliance
matrix, version description document, vulnerability
analysis and test vectors. Ideally, the integration guide
would be the integrator’s roadmap to ISO 26262 using
the documentation set provided by the component
supplier.

http://www.rti.com
http://www.rti.com

232 E. Java Drive, Sunnyvale, CA 94089
Telephone: +1 (408) 990-7400
Fax: +1 (408) 990-7402
info@rti.com

CORPORATE HEADQUARTERS

WHITEPAPER • ISO 26262 COMPLIANCE USING APPROVED SOFTWARE COMPONENTS FOR ROAD VEHICLES

rti.com

rti_software

rtisoftware

company/rti

connextpodcast

rti_software

RTI, Real-Time Innovations and the phrase “Your systems. Working as one,” are registered trademarks or trademarks
of Real-Time Innovations, Inc. All other trademarks used in this document are the property of their respective owners.
©2020 RTI. All rights reserved. 50036 V6 0820 7 • rti.com

SUMMARY AND CONCLUSIONS

The trends in automotive design include the ever-increasing
use of software, integration of software components at various
levels of safety and regulatory compliance with ISO 26262.
Additionally, there is a trend for more autonomous features
in road vehicles that bring about complex safety goals and
requirements. Project teams seeking to integrate COTS
software into their automotive will need to vet those software
components closely. Beyond just the hardware compatibility,
the integrator will need to show regulatory compliance
with Part 6 (among others) of ISO 26262. For a software
component, this can be tricky because not all “certifiable”
software components are equal in value and capability.

It is important to recognize that beyond an ISO 26262
accreditation for a COTS component, lies integration activity
that imposes burdens on the integrator. Any software
component used in an ISO 26262 system should have some
evidence, guidance and documentation that ensures the
integrator can reuse that certification evidence without
undue burden or risk. Before integrators attempt to use a
COTS component, they should determine how the component
supports the considerations raised here. Lack of a vulnerability
analysis, safety manual, partitioning guidance as well as user’s
guides and manuals will make ISO 26262 approval using a
COTS component more burdensome. Companies like Verocel
and RTI have used their experience in other industries to
align their offerings properly for the automotive designers to
enable successful ISO 26262 compliance.

ABOUT VEROCEL

Verocel (www.verocel.com) was founded in 1999 and has
been dedicated to ensuring the safe behavior of software and
complex hardware in multiple industries. Verocel has been a
leader in defining a gold standard for software certification
practices. Based on our experience, Verocel has developed
a number of techniques and processes that make our work
efficient and compliant with the rigors of standards such
as DO-254, DO-178B/DO-178C, IEC 61508, IEC 62304 and
ISO 26262 and more. The Verocel team has experience on
scores of projects from nuclear reactors, industrial control
systems, flight management computers and aircraft displays,
among others. Verocel’s unique skills lie in constraining COTS
software and hardware for safety-critical usage and have
applied these skills to components such as operating systems,
communication protocols, system-on-chip microprocessors
and logic devices.

Real-Time Innovations (RTI) is the largest software framework provider for smart machines and real-world systems.
The company’s RTI Connext® product enables intelligent architecture by sharing information in real time, making large
applications work together as one.

With over 1,500 deployments, RTI software runs the largest power plants in North America, connects perception to control in
vehicles, coordinates combat management on US Navy ships, drives a new generation of medical robotics, controls hyperloop
and flying cars, and provides 24/7 medical intelligence for hospital patients and emergency victims.

RTI is the best in the world at connecting intelligent, distributed systems. These systems improve medical care, make our roads
safer, improve energy use, and protect our freedom.

RTI is the leading vendor of products compliant with the Object Management Group® (OMG) Data Distribution Service™ (DDS)
standard. RTI is privately held and headquartered in Sunnyvale, California with regional headquarters in Spain and Singapore.

Download a free 30-day trial of the latest, fully-functional Connext DDS software today: https://www.rti.com/downloads.

ABOUT RTI

http://www.rti.com
http://www.rti.com
https://www.instagram.com/rti_software/
https://soundcloud.com/connextpodcast
http://www.rti.com
https://twitter.com/rti_software
https://www.facebook.com/RTISoftware/
https://www.linkedin.com/company/rti/
https://soundcloud.com/connextpodcast
https://www.instagram.com/rti_software/
https://www.linkedin.com/company/rti/
https://twitter.com/rti_software
https://www.facebook.com/RTISoftware/
http://www.rti.com
http://www.rti.com
http://www.verocel.com
http://www.rti.com/downloads

