Modern ultrasound medical systems serve a number of diagnostic and therapeutic functions. Although they are designed to be portable and easy to use, they are standalone systems that meet specific needs at a specific place and time. Image interfaces and connectors are built to enable access to the patient information they gather, which is essentially centered around the device (pictured above).

Because of the growing number, variety and complexity of medical devices, they must evolve to become more readily and easily integratable into both hospital care systems and research laboratories. The data needs to be better maintained for both patient records and to meet the increased regulatory and legal compliance. Ultimately, the goal is to improve both healthcare quality and practices.

To build out these new product capabilities, BK Ultrasound decided to embark on a multi-year research program. The program aims to determine the extent to which their standalone ultrasound systems can be integrated into multiple distributed systems, without losing any current functionality. The program is also mindful of impacts to the hospital environment, future plans for the Industrial Internet of Things and cyber security.

CHALLENGE

As a large distributed system scales, the ability to simultaneously maintain or enhance performance and reliability creates its own set of unique challenges. How do you address the distributed future, ensure you learn from past experiences and build on the investments customers have already made? BK Ultrasound is in the process of overcoming these challenges by building healthcare systems that are more cost effective and provide greater integration into the patient care systems to facilitate improved decision making for doctors.

HIGHLIGHTS

- BK Ultrasound embarked on a multi-year program to determine how their ultrasound systems can be integrated into multiple distributed systems without losing functionality.
- RTI Connext DDS met the requirements for its flexible, data-centric architecture, addressing the challenge of combining real-time connectivity with IT infrastructure.

Part of the process of distributing an ultrasound system requires determining how much of the existing standalone system can be deconstructed into constituent elements while retaining functionality, reliability and performance. This might include the transducer for obtaining the data, the algorithmic engine for processing data, the display device for presenting images and the integration with back office systems (Fig. 1).

Shifting from a centralized, tightly-coupled, standalone architecture to a distributed system significantly impacts the development methodology. The distributed sub-system development teams need greater autonomy to evolve and develop features specific to their function. Ultimately, the architectural approach must simultaneously meet both system and developer needs.

SOLUTION

Early in their process, BK Ultrasound identified data as the key integration point. However, the complexity of the data quickly became apparent. They had to consider both the type of data, as well as how it was used in the system:
They looked for a way to manage the data consistently across all their independent developers while simultaneously, but independently enhancing performance capabilities for very large data-streams from the scanner.

Because each distributed system is modular and potentially independently developed, BK Ultrasound needed a mechanism that focused on data to ensure a loose-coupling between system elements. They opted to use a global databus and a data-centric design approach that includes management tools for performance, reliability and other system attributes.

As a result, they would not only decouple applications from each other, but also decouple applications from the need to understand or know anything about underlying physical delivery media or network topology.

BK Ultrasound settled on RTI Connext DDS as the best foundation for the BK Ultrasound Global Databus.

BENEFITS

The main benefit of using a Connext DDS-based Global Databus was flexibility that helped to:

- Develop applications independently
- Implement plug and play, and assess proprietary and commercial hardware architectures
- Finely control performance
- Provide real-time response and action in a distributed system

DDS readily addresses the challenge of mixing real-time communications with IT infrastructure, an essential requirement for BK Ultrasound systems.

Due to the flexibility DDS offers, features can be developed independently of the need to integrate security into future releases. RTI Connext DDS Secure can be easily and smoothly added to any legacy system.

As hospitals and healthcare providers establish their communications infrastructure, their suppliers must adapt their system architecture to meet emerging needs. The data centric approach adopted by BK Ultrasound ensures that their distributed system architecture will lead the way, both for ultrasound system technologies and integration with the Industrial IoT.

ABOUT RTI

Real-Time Innovations (RTI) is the Industrial Internet of Things (IIoT) connectivity company. The RTI Connext® Databus is a software framework that shares information in real time, making applications work together as one, integrated system. It connects across field, fog and cloud. Its reliability, security, performance and scalability are proven in the most demanding industrial systems. Deployed systems include medical devices and imaging; wind, hydro and solar power; autonomous planes, trains and cars; traffic control; Oil and Gas; robotics, ships, and defense.

RTI lives at the intersection of functional artificial intelligence and pervasive networking™.

RTI is the largest vendor of products based on the Object Management Group (OMG) Data Distribution Service™ (DDS) standard. RTI is privately held and headquartered in Sunnyvale, Calif.